• 제목/요약/키워드: 반능동형 충격흡수기

검색결과 2건 처리시간 0.009초

반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석 (CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber)

  • 윤준원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석 (Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System)

  • 이광헌;정헌술
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.