• Title/Summary/Keyword: 반능동제어 시스템

Search Result 47, Processing Time 0.022 seconds

Semi-active Control of Tall Building Subjected to Wind Loads Using Magneto-rheological Fluid Dampers (자기유번유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.403-410
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 3차 ASCE benchma가 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다. 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유사한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 시스템임을 확인할 수 있었다.

  • PDF

Performance Evaluation of the New Smart Passive Control Device using Shaking Table Test (진동대 실험을 통한 신개념 스마트 수동제진장치의 제진성능 평가)

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Seok-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • This paper presents the vibration control performance of the smart passive control system to suppress the undesired vibration of the structure subjected to the earthquake loadings. Smart passive control system is the MR damper-based control system augmented with electromagnetic induction(EMI) device which consists of permanent magnets and solenoid coils. According to the Faraday's law of electromagnetic induction, an EMI device produces electrical energy from the mechanical energy due to the reciprocal motions of the structure and provide it to the MR damper. The smart passive control system can be the simple and easy to implement and maintain control system by replacing the feedback control system including sensors, controllers and external power sources of the conventional MR damper-based semiactive control system with the EMI device. The control performance of the smart passive control system is evaluated through the set of shaking table test considering the various historical earthquake loadings.

Control of Semi-active Suspensions for Passenger Cars(I) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

Automotive Seat Vibration Control with a Nonlinear Seat Cushion Model (비선형 시트 쿠션 모델을 고려한 자동차 시트의 진동 제어)

  • Mo, Chang-Ki
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.261-266
    • /
    • 2003
  • 이 논문에서는 반능동 진동 흡수기를 통합 시트/섀시 현가 장치에 확대, 적용하여 그 성능을 조사하였다. 통함 현가시스템의 성능분석을 위해 집중 인체질량과 함께 실험적으로 입증된 한 비선형 시트 쿠션 모델을 도입하였다. 또한 3 자유도 시트/섀시 현가시스템의 효과적인 진동제어를 위해 리아푸노브 바이스테이트 제어법칙을 사용하였다. 시뮬레이션결과 반능동 통합 현가장치는 시트 쿠션 모델과 관계없이 운전자의 승차감과 관련 있는 시트의 절대가속도 크기와 시트쿠션의 시트 트랙에 대한 상대변위를 상당히 감소시킬 수 있음을 알 수 있었다. 그러나, 주로 사용되어온 선형 쿠션 모델을 사용한 경우보다 비선형쿠션 모델을 사용한 경우의 제진성능이 약간 저조함을 알 수 있었다. 따라서, 자동차 시트 설계시 성능분석을 위해서는 실제의(비선형의) 시트 쿠션 특성을 적용해야 함을 알 수 있다.

  • PDF

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

Control of Semi-active Suspensions for Passenger Cars(II) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2187-2195
    • /
    • 1997
  • A semi-active suspension test system was designed and built for the experimental study. Vehicle parameters were estimated through tests and a quarter-car model was validated by comparing computer simulation results and laboratory test results. Alternative semi-active suspension control laws have been tested using the test system. Modulable damper used in this study is a "reverse" damper with 42 states which is controlled by a stepper motor. Experimental results have shown that semi-active suspensions have potential to improve ride quality of automobiles.tomobiles.

Semi-Active Control of Helicopter Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 헬기 착륙장치 반능동제어)

  • Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Hyun, Young-O;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2008
  • In this paper, the semi-active control of a helicopter landing gear using magneto -rheological(MR) damper is studied. A dynamic model of the MR damper is formulated by incorporating magnetic field-dependent Bingham properties of the MR fluid. The electromagnet of the MR damper is designed and its magnetic field is analyzed using a commercial finite element code. The damping characteristics of MR damper by changing the intensity of the magnetic field are investigated and the dynamic responses of the helicopter landing gear with MR damper are simulated. The semi-active control of the helicopter landing gear is simulated by implementing a sky-kook control algorithm and its performance is evaluated comparing to the passive control.

Smart Passive System Based on MR Damper (MR댐퍼 기반의 스마트 수동제어 시스템)

  • Cho, Sang-Won;Jo, Ji-Seong;Kim, Chun-Ho;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.51-59
    • /
    • 2005
  • Magnetorheological(MR) dampers are one of the most promising semi active control devices, because they have advantages such as small power requirement, reliability, and low price to manufacture. To reduce the responses of structures with MR dampers, a control system including power supply, controller, and sensors is required. However, when a mount of MR dampers are used to a large?scale civil structure such as cable stayed bridges, the control system becomes complex. Therefore, it is not easy to install and maintain the MR damper based control system. To resolve above difficulties, This paper proposes a smart passive system that consists of a MR damper and an electromagnetic induction(EMI) system. According to the Faraday’s law of induction, EMI system that is attached to the MR damper produces electric energy. The produced energy is supplied to the MR damper. Thus, the MR damper with EMI system does not require any power at all. Furthermore, the induced electric energy is proportional to external loads like earthquakes, which means the MR damper with EMI system is adaptable to external loads without any controller and corresponding sensors. Therefore, it is easy to build up and maintain the proposed smart passive system.

A Robust Semi-active Suspension Control Law (반능동 현가시스템의 Robust 제어 법칙)

  • Yi, K.S.;Suh, M.W.;Oh, T.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF