• Title/Summary/Keyword: 반경스러스트

Search Result 3, Processing Time 0.018 seconds

Influence of Large Change of Specific Speed on the Performance of Very Low Specific Speed Centrifugal Pump (비속도의 큰 변화가 극저비속도 원심펌프의 성능에 미치는 영향)

  • Choi, Young-Do;Kagawa, Shusaku;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.40-46
    • /
    • 2006
  • Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed $n_s$. However, below $n_s=60\;[min^{-1},\;m^3/min,\;m]$, the pump characteristics are not yet clear. Therefore, present study is aimed to investigate the influence of large change of specific speed on the performance of a very low specific speed centrifugal pump. Moreover, influence of impeller configuration on the performance of very low specific speed pump is investigated. The results show that very low specific speed can be accomplished by reducing volute throat sectional area using circular spacer. Influence of the spacer's location and configuration in the discharge passage on the pump performance is very small. Best efficiency of very low specific speed centrifugal pump decreases proportionally to the specific speed but the best efficiency decreases on a large scale in the range of $n_s<40$. Influence of impeller configuration on the pump performance and radial thrust of centrifugal pump are considerably small in the range of extremely low specific speed $(n_s=25)$.

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Conceptual Design of the Scroll Air Compressor for Fuel Cell (연료전지용 스크롤 공기압축기 개념설계)

  • Kwon, Tae-Hun;Ahn, Jong-Min;Kim, Hyun-Jin;Shim, Jae-Hwi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Potential application of the scroll type machine to air compressor for fuel cell has been studied. Among the seven configuration factors which determine scroll wrap profile, the wrap thickness and the orbiting radius were chosen as two independent variables to generate various scroll wrap profiles. A conceptual design practice was conducted for scroll air compressor for SOFC with power output of 2 kW. With larger wrap thickness and orbiting radius, base plate area of the orbiting scroll becomes smaller, so is the axial gas force acting on the base plate, resulting in reduced thrust loss in spite of larger friction velocity. Performance analysis on the designed model showed that its total efficiency was 64.4% with the mass flow rate per unit compressor input of 0.00905 kg/(s kW) for the wrap thickness of 3.5 mm and the orbiting radius of 3.0 mm.