• Title/Summary/Keyword: 박판 스프링

Search Result 41, Processing Time 0.027 seconds

Pressure Transfer Analysis and Experimental Verification of Thin Plate Spring Type Check Valve Considering P-delta Effect (P-delta 효과를 고려한 박판 스프링 형 체크밸브의 압력전달 해석 및 실험적 검증)

  • Hwang, Yong-Ha;Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • In this paper, the calculation of the theoretical pressure transfer ratio due to the deformation of the thin-plate spring type check valve applied to the small piezoelectric-hydraulic pump was carried out. A thin-plate check valve is a flexible body that is deformed by an external force. The deformation of the check valve affects the rate at which the chamber pressure is transferred to the load pressure. The theoretical pressure transfer ratio for each model was calculated to compare the difference between the assumption that the thin-plate check valve is a rigid body and that of the flexible body model. The P-delta effect was considered for the calculation of the pressure transfer ratio of the flexible check valve model. In addition, a verification test for the calculated pressure transfer ratio obtained by considering the deformation of the flexible check valve model was carried out. The load pressure was measured by applying a thin-plate and ball-thin plate spring type check valves, respectively. The experimental pressure transfer ratio was calculated using the respective load pressure obtained from the experiments. The validity of the pressure transfer analysis of the check valve, taking into consideration the P-delta effect, was verified by comparing it with the theoretically calculated pressure transfer ratio.

Development of Analysis System for Sheet Metal Forming and its Application (박판금속성형해석시스템(SAIT_STAMP)의 개발과 응용)

  • 조진우;김충식;이동우;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.19-27
    • /
    • 1998
  • 박판금속성형공정을 통하여 컴퓨터를 이용한 계산방법으로 효율적이고 정확하게 해석할 수 있는 박판성형해석시스템인 SAIT_STAMP를 개발하였다. 또한 이를 현업문제에 적용하여 금형의 개발기간과 비용을 줄이고 성형품 품질저하 문제들을 해결하는데 이용하였다. SAIT_STAMP 는 성형해석, 성형후해석 프로그램과 전·후 처리기로 구성이 되어있다. 금형과 재료의 접촉 및 마찰을 고려한 새로운 접촉처리방법을 성형해석에 적용하여 해석속도와 해석정확도를 향상하였고 다단계성형 및 유압성형 등 박판성형에 필요한 대부분의 기능을 개발하여 적용하였다. 성형후해석은 성형해석의 결과를 토대로 스프링백해석을 수행한다. Visual C++을 사용하여 개발된 전·후 처리기는 window 95N/T 환경의 PC에서 수행된다. 개발된 프로그램을 이용하여 현업 문제에 적용 해석하였으며 상용S/W 대비 우수한 결과를 얻었다. 현재 삼성내 9개 관계사에서 설치되어 사용중이며 프로그램의 대외신뢰성확보를 위해 대학과 비경쟁업체에 프로그램을 설치하여 프로그램을 설치하여 프로그램의 시험과 성능향상을 하고 있다.

  • PDF

SpringBack Prediction for Sheet Metal forming Process Using Shell Element (쉘 요소를 이용한 박판성형 공정의 스프링 백 예측)

  • Ko Hyung-Hoon;Lee Chan-Ho;Kim Byung-Sik;Lee Kwang-Sik;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.402-405
    • /
    • 2005
  • Such press-forming process are the used machine ability and the characteristic, used material, tile accuracy of the part, condition of a process are considered the designed. In order to estimate in automotive sheet forming processes used AutoForm software. A through in simulation result comparison with experimentation result, it was possible to know that much the same estimated spring-back through a forming analysis. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.

Sheet Analysis for Construsion of the Correction System on Detent Spring (디텐트 스프링 교정시스템 구축을 위한 박파해석)

  • 권혁홍;김선호;박경택;정용헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1150-1153
    • /
    • 1995
  • This paper describes that study which construct a theoretic and experimental algorithm in order to make the automatic correction system od detent spring, and when load for correction pressed at spring, it can be found elastic and plastic deformation quantities by Finite Element Analysis. As a result, it has been found that the simulation datas are in good agreement with experimental results.

  • PDF

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.191-194
    • /
    • 2009
  • Very big springback in advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be eliminated by the tool surface correction method or the forming process control method. Since the springback reduction by controlling the forming process is limited, in this study, the die correction method which finds die correction from the relationship between die design variable and springback is introduced to achieve springback reduction and is applied to the automotive side rail to reduce the springback of 75.8% within the assembly limit of 1 mm.

  • PDF

A Study on the Large Deflection of Flat Spring Subjected to Follower Load by a Rotating Pin (회전 핀의 종동 하중에 따른 박판 스프링의 대변형에 대한 연구)

  • Chung, Il-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1352-1358
    • /
    • 2004
  • The mechanical spring is one of widely used machine elements. Among various kinds, flat-type spring loaded by a rotating pin was studied. A flat spring was simplified to a cantilever beam, and numerical analysis was attempted. Since the loading pin rotates about a separate axis from the fixed spring or vice versa, the location, direction, and magnitude of the contact force including normal contact and friction loads vary accordingly. Meanwhile, the spring is deformed substantially as the relative motion progresses. Therefore, this problem needs to be formulated taking the follower loading characteristics and geometrical non-linearity into account. Derived nonlinear differential equation was solved to yield the spring deflection, contact force and the torque to rotate the pin, and the result was compared with a finite element solution. Also, the influences of principal design parameters were studied. The proposed methodology is expected to be useful for the design of pin-loaded flat spring and the prevention of mechanical failures in the form of yielding or fatigue failure of spring or severe wear of the components.

The Effects of the Testing Temperatures on the Mechanical Properties of the Stainless Steel(STS301CSP) for Flat Spring (박판 스프링용 스테인리스강재(STS301CSP)의 시험온도에 따른 기계적 특성평가)

  • 류태호;원시태;박상언;임철록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.390-395
    • /
    • 2003
  • This study examined the effects of the testing temperature on the mechanical properties of the stainless steels (STS301CSP-3/4H and STS301CSP-H) for flat spring. Hardness test and fatigue test were performed at room temperature (2$0^{\circ}C$ Tensile testandcreeptestwere performed attemperature range 2$0^{\circ}C$~10$0^{\circ}C$. The micro-victors hardness values of STS301CSP-3/4H and STS301CSP-H were HV=443 and HV=488. respectively. The Elastic modulus, tensile strength, yield strength and strain of these materials were decreased with increasing testing temperature. respectively. The maximum creep strain for 100hr atcreep temperature (10$0^{\circ}C$~20$0^{\circ}C$ and creep stress (Tensile strength$\times$50%) of these materials were 0.53%~0.58%. The fatigue limit of STS301CSP-3/4H and STS301CSP-H were 64.5Kgf/mm$^2$ and 67.4Kgf/mm$^2$, respectively.

  • PDF