• Title/Summary/Keyword: 박용엔진

Search Result 79, Processing Time 0.021 seconds

선박용 디젤기관의 연구개발 동향

  • 최갑석
    • Journal of the KSME
    • /
    • v.29 no.6
    • /
    • pp.586-593
    • /
    • 1989
  • 국내 선박용 원동기연구는 1980년대에 들어서면서부터 엔진의 성능시험평가, 요소 기술개발연구, 소형엔진의 성능개량연구 등이 연구인력확보, 연구시설 확충 및 연구기반 구축과 병행하여 진행 되고 있다. 중. 대형엔진공장을 유치하여 생산공급하기도 급급했던 초기단계에서 수요확보를 위한 노력이 절실히 요망되었고, 또 부품 국산화, 수요자 요구에 부응키 위한 자체 능력향상은 가공생 산기술축적, 설계능력향상, 수리전문 기술자 및 AS등으로 도모되어 왔다. 외국 기술도입에 의한 생산의 장점-기술도입자체 외에도 세계적인 서비스 네트워크, 상표사용, 새로운 기술의 확보 등은 한국형 엔진 개발을 위한 연구를 도외시해 왔다. 한편 소형엔진에서는 어선 근대화 사업, 어민들 의 엔진성능인식이 상향됨으로써 새로운 고성능 엔진개발이 1980년대에 활발하게 진행되어 상당 한 진전을 보여 왔으며 고속엔진개발이나 대체에너지 이용 엔진개발에도 연구가 확대되고 있다. 본 글에서는 국내 박용 원동기 연구개발동향을 소개하기 위하여 국내 박용디젤엔진 산업과 연구 배경, 개발연구 등에 대한 내용을 실적 및 진행중인 과제를 위주로 요약 소개하고자 한다.

  • PDF

Crankshaft Stiffness Matrix Construction for the Vibration Analysis Coupled with Torsional and Axial Directions of a Marine Engine Shaft System (박용엔진 축계 비틀림/종 연성진동 해석을 위한 크랭크 축 강성행렬 구축)

  • Kim, Won-Jin;Jeon, Min-Kyu;Jeong, Dong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.55-61
    • /
    • 1999
  • The torsional and axial vibrations of shaft system have been calculated independently because of both the limitation of computing time and the complexity of crankshaft model. In actual system, however, the torsional and axial vibrations are coupled. Therefore, in recent, many works in the coupled vibration analysis have been done to find out the more exact dynamic behavior of shaft system. The crankshaft model is very important in the vibration analysis of shaft system because most of excitation forces act on the crankshaft. It is, however, difficult to establish an exact model of crankshaft since its shape is very complex. In this work, an efficient method is proposed to construct the stiffness matrix of crankshaft using a finite element model of half crankthrow. The proposed and existing methods are compared by applying to both a simple thick beam with circular cross section and an actual crankshaft.

  • PDF

Characteristics of Heat Transfer for Small-size Marine Diesel Engine (소형박용 디젤엔진의 전열특성)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

Durability Design of Composite Piston in Marine Diesel Engines (박용 디젤엔진용 분리형 피스톤의 내구설계)

  • Son, Jung-Ho;Ha, Man-Yeong;Ahn, Sung-Chan;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.651-657
    • /
    • 2010
  • A composite piston with a crown made of steel and a skirt made of NCI is used in a marine diesel engine, which has a maximum firing pressure of over 180 bar and a high thermal load. In the fatigue design of the composite piston, the fatigue is influenced by factors such as the load type, surface roughness, and temperature; further, the distribution ratio of the firing force from the crown to the skirt is important for optimizing the design of the crown and skirt. In this study, the stress gradient method was used to consider the effect of the load type. The temperature field on the piston was predicted by cocktail-shaking cooling analysis, and influence of high temperature on fatigue strength was investigated. The load transfer ratio and contact pressure were optimized by design of the surface shape and accurate tolerance analysis. Finally, the cooling performance and durability design of the composite piston were verified by performing a long-term prototype test.