실제 영화관에서는 매출을 최대화하기 위해 저마다의 상영관 별 다른 영화 배치 전략을 가지고 있다. 이 영화 배치 전략으로 인해 영화관의 매출이 좌지우지 된다. 여기서 가장 보편적인 기준은 박스오피스이다. 하지만 박스오피스는 과거 영화 상영의 매출액을 모아둔 것으로 개봉되지 않은 영화에 대한 정보는 가지고 있지 않다. 이 개봉되지 않은 영화에 대한 기준, 즉 박스오피스를 얼마나 정확하게 예측 할 수 있는지가 각 영화관의 경쟁력을 결정한다. 본 논문은 개봉 예정인 영화들을 분석하고 이를 통해 박스오피스를 예측는 방법을 제시하고, 실제 박스오피스와 비교, 분석하는 내용을 다룬다.
본 연구는 한국 영화진흥위원회에서 수집한 박스오피스 데이터를 활용하여 관람 인원수와 매출액을 예측하는 모델을 구축하고, 이를 비교 및 분석하였다. 데이터 전처리 단계에서는 불필요한 변수를 제거하고, 결측치를 범주형 및 수치형 데이터에 따라 각각 처리하여 데이터의 일관성을 유지하였다. 또한, 탐색적 자료 분석을 통해 서울 지역의 관람 인원수, 매출액, 총 상영관 수, 영화 장르, 영화 등급, 개봉 월을 주요 변수로 선정하였으며, 서울 지역의 관람 인원수와 매출액이 박스오피스 성과와 높은 상관관계를 나타냄을 확인하였다. 이러한 분석을 바탕으로 CatBoost와 PyCaret AutoML을 사용하여 예측 모델을 개발하였다. CatBoost는 감독명, 제작사명, 영화 장르와 같은 범주형 변수를 효과적으로 처리할 수 있는 특성으로 인해 적합하다고 판단되었으며, PyCaret AutoML은 비전문가도 다양한 모델을 쉽게 비교할 수 있는 도구로서 모델링 과정을 자동화하여 효율성을 극대화할 수 있다. 예측 모델의 성능은 평균절대 오차, 평균제곱근오차, 결정 계수를 기준으로 평가하였으며, CatBoost가 더 높은 예측 정확도를 보였다. 또한, SHAP 기법을 적용하여 주요 변수를 해석하였으며, 서울 지역의 관람 인원수와 매출액이 가장 중요한 변수임을 확인할 수 있었다. 본 연구는 신뢰성 있는 박스오피스 예측 모델을 제시함으로써 영화 산업의 의사결정에 기여하고, 데이터 기반 전략 수립을 지원한다.
본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.
특정 영화의 스크린 독과점이 꾸준히 논란이 되고 있다. 본 논문에서는 영화 스크린 분배의 불평등성을 지적하고 이에 대한 개선을 요구할 근거로 머신러닝 기법을 활용한 영화 관람객 예측 모델을 제안한다. 이에 따라 KOBIS, 네이버 영화, 트위터, 구글 트렌드에서 수집한 3,143개의 영화 데이터를 이용하여 랜덤포레스트와 그라디언트 부스팅 기법을 활용한 영화 관람객 예측 모델을 구현하였다. 모델 평가 결과, 그라디언트 부스팅 모델의 RMSE는 600,486, 랜덤포레스트 모델의 RMSE는 518,989로 랜덤포레스트 모델의 예측력이 더 높았다. 예측력이 높았던 랜덤포레스트 모델을 활용, 상영관을 크게 확보하지 못 했던 봉준호 감독의 영화 '옥자'의 상영관 수를 조절하여 관람객 수를 예측, 6,345,011명이라는 결과를 제시한다.
박스 오피스 예측은 영화 이해관계자들에게 중요하다. 따라서 정확한 박스 오피스 예측과 이에 영향을 미치는 주요 변수를 선별하는 것이 필요하다. 본 논문은 영화의 박스 오피스 예측 정확도 향상을 위해 다변량 시계열 데이터 분류와 주요 변수 선택 방법을 제안한다. 연구 방법으로 한국 영화 일별 데이터를 KOBIS와 NAVER에서 수집하였고, 랜덤 포레스트(Random Forest) 방법으로 주요 변수를 선별하였으며, 딥러닝(Deep Learning)으로 다변량 시계열을 예측하였다. 한국의 스크린 쿼터제(Screen Quota) 기준, 딥러닝을 이용하여 영화 개봉 73일째 흥행 예측 정확도를 주요 변수와 전체 변수로 비교하고 통계적으로 유의한지 검정하였다. 딥러닝 모델은 다층 퍼셉트론(Multi-Layer Perceptron), 완전 합성곱 신경망(Fully Convolutional Neural Networks), 잔차 네트워크(Residual Network)로 실험하였다. 결과적으로 주요 변수를 잔차 네트워크에 사용했을 때 예측 정확도가 약 93%로 가장 높았다.
본 연구는 영화 흥행의 척도로서 총 관객수의 예측을 다루었다. 의사결정나무, MLP 신경망모형, 다항로짓모형, support vector machine과 같은 데이터마이닝 분류 기법들을 사용하여 개봉 전, 개봉 일, 개봉 1주 후, 그리고 개봉 2주 후 시점 별로 예측이 이루어진다. 국적, 등급, 개봉 월, 개봉 계절, 감독, 배우, 배급사, 관객수, 그리고 스크린 수와 같은 영화의 내재적인 속성을 나타내는 변수 뿐만 아니라 포털의 평점과 평가자 수, 블로그 수, 뉴스 수와 같은 온라인 구전 변수들이 예측변수로 사용되었다. 10-중 교차 검증에서 신경망모형의 정확도는 개봉 전 시점에서도 90% 이상의 높은 예측력을 보였다. 또한 최종 온라인 구전 변수의 추정치를 예측변수로 추가함으로서 예측의 정확도가 더 높아짐을 볼 수 있다.
2013년 누적인원 2억명을 돌파한 한국의 영화 산업은 매년 괄목할만한 성장을 거듭하여 왔다. 하지만 2015년을 기점으로 한국의 영화 산업은 저성장 시대로 접어들어, 2016년에는 마이너스 성장을 기록하였다. 영화산업을 이루고 있는 각 이해당사자(제작사, 배급사, 극장주 등)들은 개봉 영화에 대한 시장의 반응을 예측하고 탄력적으로 대응하는 전략을 수립해 시장의 이익을 극대화하려고 한다. 이에 본 연구는 개봉 후 역동적으로 변화하는 관람객 수요 변화에 대한 탄력적인 대응을 할 수 있도록 주차 별 관람객 수를 예측하는데 목적을 두고 있다. 분석을 위해 선행연구에서 사용되었던 요인 뿐 아니라 개봉 후 역동적으로 변화하는 영화의 흥행순위, 매출 점유율, 흥행순위 변동 폭 등 선행연구에서 사용되지 않았던 데이터들을 새로운 요인으로 사용하고 Naive Bays, Random Forest, Support Vector Machine, Multi Layer Perception등의 기계학습 기법을 이용하여 개봉 일 후, 개봉 1주 후, 개봉 2주 후 시점에는 차주 누적 관람객 수를 예측하고 개봉 3주 후 시점에는 총 관람객 수를 예측하였다. 새롭게 제시한 변수들을 포함한 모델과 포함하지 않은 모델을 구성하여 실험하였고 비교를 위해 매 예측시점마다 동일한 예측 요인을 사용하여 총 관람객 수도 예측해보았다. 분석결과 동일한 시점에 총 관람객 수를 예측했을 경우 보다 차주 누적 관람객 수를 예측하는 것이 더 높은 정확도를 보였으며, 새롭게 제시한 변수들을 포함한 모델의 정확도가 대부분 높았으며 통계적으로 그 차이가 유의함으로써 정확도에 기여했음을 확인할 수 있었다. 기계학습 기법 중에는 Random Forest가 가장 높은 정확도를 보였다.
최근 일반 대중을 대상으로 한 콘텐츠 투자 플랫폼 중 하나로 크라우드펀딩 플랫폼이 주목받고 있다. 본 연구는 영화 크라우드펀딩 프로젝트 요인이 크라우드펀딩 달성률에 미치는 영향을 살펴보고자 하였다. 이를 위해 크라우드펀딩 플랫폼에 게시된 영화 프로젝트의 주요 정보를 변인화하였다. 텍스트 수, 이미지 수, 스타파워, IP 기반 영화 여부, 영화 제작 단계, 박스오피스 예측, 투자 자금 비율, 투자 가능 여분 금액, 수익 정산 방식, 최소 투자 금액 조건을 독립변인으로 설정하였으며, 이들 변인이 크라우드펀딩 달성률에 어떠한 영향을 미치는지 살펴보았다. 다중회귀분석을 실시한 결과, 영화 제작 단계, 투자 자금 비율, 투자 가능 여분 금액, 수익 정산 방식이 종속변인에 유의미한 영향을 미치는 것으로 확인되었다. 본 연구는 탐색적 접근법을 통해 영화 크라우드펀딩 프로젝트의 흥행에 영향을 미치는 변인을 발굴하였다는 점에서 의의가 있다. 또한, 본 연구의 결과는 영화 크라우드펀딩 프로젝트 기획 시 실무적 자료로 활용될 수 있을 것이다.
이 연구는 빅데이터를 활용하여 영화흥행 요인을 분석하는 것이 목적이다. 한국의 영화산업 규모는 날로 커지고 있지만, 현재까지 진행되어온 영화 흥행 요인 분석 및 예측과 관련된 논의는 관련 데이터를 망라하지 못해 정확성을 담보할 수 없는 상황이었다. 지금까지 한국에서의 천만 영화는 총 13편이 있었고, 이 연구에서는 천만 흥행에 눈물과 웃음이 주된 텍스트 내적 요인으로 작용함을 밝혔다. 이에 빅데이터를 활용해 영화에 대한 댓글 중 웃음과 눈물과 관련된 용어를 수집한 후, 영화의 구성 5단계(발단-전개-위기-절정-결말) 중 어느 부분에 웃음과 눈물 요소가 많은지를 도표화하여 천만 영화의 장르별 구성 방식을 논증하였다. 이러한 분석 결과는 앞으로 영화 제작 전 단계에서 시나리오 상에서의 흥행 예측을 하는 종합적인 데이터베이스 구축에 기여하게 될 것이다.
영화라는 매체는 크게 내러티브와 스펙터클로 이루어진다. 비슷한 내러티브라도 스펙터클이 달라지거나 혹은 비슷한 스펙터클이라도 내러티브가 달라지면 총체로서의 영화가 관객에게 주는 경험은 완전히 달라진다. 본 논문은 비슷한 내러티브의 영화들이 관객에게 주는 경험의 차이를 논하기 위해 그림 형제의 "백설 공주"이야기에 기반 하여 만들어진 디즈니의 <백설 공주와 일곱 난쟁이>, 타셈 싱의 <거울아 거울아>, 루퍼트 샌더스의 <스노우 화이트 앤 더 헌트맨>, 세 편의 영화들을 내러티브와 스펙터클로 나누어 비교분석하였다. 그 결과 디즈니의 <백설 공주>가 내러티브적인 면과 스펙터클적인 면에서 모두 이후에 만들어진 영화들의 원형으로 작용했다는 사실을 알 수 있었다. 디즈니의 <백설 공주>가 "잠자는 숲 속의 공주" 이야기에서 차용한 키스신이나 백설 공주가 동물들과 교감한다는 설정, 일곱 난쟁이 각각의 이름과 성격묘사 등은 그림 형제의 원작에는 없는 부분인데 이후의 영화들은 모두 이 변화를 채택했다. 특히 <스노우 화이트 앤 더 헌트맨>의 경우 백설 공주의 의상도 디즈니 버전과 흡사하고, 일부 샷들은 설정과 구도까지도 거의 동일하다. 그럼에도 불구하고 이 영화들은 확연하게 다른 스타일의 스펙터클로 자신의 정체성을 보여준다. 디즈니의 <백설 공주>가 이후 많은 영화들의 원형이된 마녀의 전형적인 모습을 보여준다면 <거울아 거울아>는 타셈 싱만이 가능한 눈속임 그림과도 같은 독특한 마법의 세계를 보여주고 있으며 <스노우 화이트 앤 더 헌트맨>는 친숙한 것 사이의 섬뜩함이라는 언캐니의 스펙터클로 관객을 압도한다. 즉 비교적 예측 가능한 단순한 내러티브에도 불구하고 세 영화가 박스 오피스에서 비교적 성공을 거둔 것은 많은 부분 스펙터클의 힘이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.