• Title/Summary/Keyword: 박막 제조 공정

Search Result 679, Processing Time 0.026 seconds

Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer (실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동)

  • Lim, Hyo Ryoung;Eom, Nu Si A;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.401-406
    • /
    • 2015
  • Getter is a class of materials used in absorbing gases such as hydrogen and moisture in microelectronics or semiconductor devices to operate properly. In this study, we developed a new device structure consisting of porous anodized alumina films on textured silicon wafer, which have cost efficiency in materials and processing aspects. Anodic aluminum oxide (AAO) with controlled pore sizes can be applied to a high-efficiency moisture absorber due to the high surface area and OH- saturated surface property. The moisture sorption capacity was 2.02% (RH=35%), obtained by analyzing isothermal adsorption/desorption curve.

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.

The Crystallinity and Electrical Properties of SrBi2Ta2O9 Thin Films Fabricated by New Low Temperature Annealing (새로운 저온 열처리 공정으로 제조된 SrBi2Ta2O9 박막의 결정성 및 전기적 특성)

  • Lee, Kwan;Choi, Hoon-Sang;Jang, Yu-Min;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.382-386
    • /
    • 2002
  • We studied growth and characterization of $SrBi_2Ta_2O_9$ (SBT) thin films fabricated by low temperature process under vacuum and/or oxygen ambient. A metal organic decomposition (MOD) method based on a spin-on technique and annealing process using a rapid thermal annealing (RTA) method was used to prepare the SBT films. The crystallinity of a ferroelectric phase of SBT thin films is related to the oxygen partial pressure during RTA process. Under an oxygen partial pressure higher than 30 Torr, the crystallization temperature inducing the ferroelectric SBT phase can be lowered to $650^{\circ}C$. Those films annealed at $650^{\circ}C$ in vacuum and oxygen ambient showed good ferroelectric properties, that is, the memory window of 0.5~0.9 V at applied voltage of 3~7 V and the leakage current density of 1.80{\times}10^{-8}$ A/$\textrm{cm}^2$ at an applied voltage of 5V. In comparison with the SBT thin films prepared at 80$0^{\circ}C$ in $O_2$ ambient by furnace annealing process, the SBT thin films prepared at $650^{\circ}C$ in vacuum and oxygen ambient using the RTA process showed a good crystallization and electrical properties which would be able to apply to the virtul device fabrication precess.

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

Study on $H_2O$ plasma by using VHF ICP (VHF ICP를 이용한 $H_2O$ 플라즈마 연구)

  • Kim, Dae-Woon;Choo, Won-Il;Jeon, Ye-Jin;Lee, Seung-Heun;Joo, Jung-Hoon;Kwon, Sung-Ku
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.459-459
    • /
    • 2007
  • VHF ICP (Very High Frequency Inductively Coupled Plasma) 반응기에서 반응기 압력, 수증기 유량, 플라즈마 출력, 반응기온도 등의 공정변수에 따른 수증기 분해특성과 수소생성거동을 실험하였다. 플라즈마 분해 특성은 OES(Optical Emission Spectroscopy)를 사용하여 분석하였으며, QMS(Quadrapole Mass Spectroscopy)를 이용하여 배기가스 성분을 분석하여, 수증기 분해거동 및 수소생성 효율을 조사하였다. 본 연구실에서 설계한 초고주파 유도결합 플라즈마는 고밀도 플라즈마 생성과 낮은 압력에서도 안정된 플라즈마 발생 특징을 나타내었다. 플라즈마 출력의 증가에 따른 수증기의 분해와 수소생성 거동은 개시영역, 선형증가영역, 포화영역의 세 영역으로 구분되는 특징을 나타내었다. 유량 및 압력의 증가에 따라 포화에 필요한 플라즈마의 출력이 증가되는 경향을 나타내었다. 본 실험의 온도범위에서는 온도 증가에 따른 수증기 분해 및 수소생성 증가효과는 플라즈마 출력의 영향에 비하여 매우 미미한 정도로 플라즈마의 높은 에너지 전달효과를 확인할 수 있었다. 따라서, 낮은 반응기 온도에서도, 유량 및 압력에 따른 포화 플라즈마조건을 설정할 경우, 높은 에너지 효율의 수소 제조가 가능함을 알 수 있었으며, 물분해 플라즈마를 이용한 저온 산화물 박막증착에의 적용도 기대된다.

  • PDF

Convergence Study on FTO Film Etchant (FTO 필름 식각액에 관한 융합연구)

  • Han, Doo-Hee;Yang, Ui-Dong
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.43-48
    • /
    • 2018
  • An etchant capable of forming a circuit in an FTO film that can replace ITO, which depends on full imports, was prepared. The etching solution is composed of 1 to 30% by weight of fluoride, 1 to 20% by weight of acid, 0.5 to 5% by weight of surfactant, 5 to 20% by weight of solvent, 0.5 to 10% by weight of corrosion inhibitor and the balance of water. This etchant can be etched using a dry film, thereby reducing the cost, and is free from bubbles and residue of the etchant. The characteristics of the etchant were etched in a time of 2 minute with a 100 nm thick FTO, and the etchant temperature was maintained at $50^{\circ}C$. An undercut of -0.00364% was obtained when put into a 2 minute etching solution. No harmful substances such as Cd, Pb, Hg and Cr components were measured. The use of FTO in Korea where rare earths do not exist can achieve localization and import substitution effect.

A study on the nitridation of GaN crystal growth by HVPE method (HVPE 법을 활용한 GaN 성장 시 질화처리에 관한 연구)

  • Lee, Seung Hoon;Lee, Joo Hyung;Lee, Hee Ae;Oh, Nuri;Yi, Sung Chul;Kang, Hyo Sang;Lee, Seong Kuk;Yang, Jae Duk;Park, Jae Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.149-153
    • /
    • 2019
  • HVPE is one of the GaN single crystal manufacturing methods which has been commercially widely used due to its high growth rate. HVPE method consists of a number of processes, in particular the nitridation of the substrate prior to GaN growth has a significant effect on the crystalline quality of the manufactured GaN single crystal. In this study, we investigated the effect of nitridation for crystalline quality of GaN when it was grown on the sapphire substrate. The whole growth conditions except for the nitridation process were the same, and the gas flow rate supplied to the sapphire substrate was variously changed during the nitridation. Here, we examined the effect of nitridation via the surface characterization of GaN single crystal grown by HVPE.

Effect of Composition on Electrical Properties of Multifunctional Silicon Nitride Films Deposited at Temperatures below 200℃ (200℃ 이하 저온 공정으로 제조된 다기능 실리콘 질화물 박막의 조성이 전기적 특성에 미치는 영향)

  • Keum, Ki-Su;Hwang, Jae Dam;Kim, Joo Youn;Hong, Wan-Shick
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2012
  • Electrical properties as a function of composition in silicon nitride ($SiN_x$) films grown at low temperatures ($<200^{\circ}C$) were studied for applications to photonic devices and thin film transistors. Both silicon-rich and nitrogen-rich compositions were successfully produced in final films by controlling the source gas mixing ratio, $R=[(N_2\;or\;NH_3)/SiH_4]$, and the RF plasma power. Depending on the film composition, the dielectric and optical properties of $SiN_x$ films varied substantially. Both the resistivity and breakdown field strength showed the maximum value at the stoichiometric composition (N/Si = 1.33), and degraded as the composition deviated to either side. The electrical properties degraded more rapidly when the composition shifted toward the silicon-rich side than toward the nitrogen-rich side. The composition shift from the silicon-rich side to the nitrogen-rich side accompanied the shift in the photoluminescence characteristic peak to a shorter wavelength, indicating an increase in the band gap. As long as the film composition is close to the stoichiometry, the breakdown field strength and the bulk resistivity showed adequate values for use as a gate dielectric layer down to $150^{\circ}C$ of the process temperature.

Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process (저온 ICP-CVD 공정으로 제조된 나노급 실리콘 박막의 물성)

  • Shen, Yun;Sim, Gapseop;Choi, Yongyoon;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • 100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.