• Title/Summary/Keyword: 박막저항

Search Result 1,446, Processing Time 0.021 seconds

Self-Curable Humidity-Sensitive Polyelectrolytes Attached to the Alumina Substrate for the Humidity Sensor and their Stability in Water (알루미나 기재에 부착된 습도센서용 자기 가교형 감습성 전해질 고분자의 내수성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • New cinnamate group-containing copolymers for a self-curable, humidity-sensitive polyelectrolyte and polymeric anchoring agents were prepared by copolymerization of [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) and 2-(cinnamoyloxy)ethyl methacrylate(CEMA). Photocrosslinkable copolymer composed of MEPAB/MMA/TMSPM/CEMA=70/20/0/10 were used for humidity-sensitive membrane, and those of 50/0/20/30 and 0/0/50/50 were used for polymeric anchoring agents. 3- (Triethoxysilyl)propyl cinnamate(TESPC) was also used as a surface-pretreating agent for the comparison of capability of attachment of polyelectrolyte to the electrode surface with polymeric photocurable silanecoupling agents. Pretreatment of the electrode substrate with anchoring agents was performed to form a cinnamate thin film on the electrode through covalent bonds. When the sensors were irradiated with UV light, the anchoring of a polyelectrolyte into the substrate was carried out via the [2$\pi$+2$\pi$] cycloaddition. The resulting sensors using polymeric anchoring agents and TESPC showed water durability with increase of resistance by 60~85%, which is corresponding to the reduction of 2.25~3.15%RH, after soaking in water for 24 h. They showed good hysteresis (-0.2%RH), response time (90 sec) and long-term stability at high temperature and humidity.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.

Spectral Response of $TiO_{2}$/Se : Te Heterojunction for Color Sensor (컬러센서를 위한 $TiO_{2}$/Se : Te 이종접합의 스펙트럼 응답)

  • Woo, Jung-Ok;Park, Wug-Dong;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-108
    • /
    • 1993
  • $TiO_{2}$/Se : Te heterojunction for color sensor has been fabricated by RF reactive sputtering and thermal evaporation methods onto glass substrate. The optimum deposition condition of $TiO_{2}$ films was such that RF power was 120 W, substrate temperature was $100^{\circ}C$, oxygen concentration was 50%, working pressure was 50 mTorr for the $TiO_{2}$ film thickness of $1000{\AA}$. In this case, the optical transmittance of $TiO_{2}$ film at 550 nm-wavelength was 85%, resistivity was $2{\times}10^9{\Omega}{\cdot}cm$, refractive index was 2.3, and optical bandgap was 3.58 eV. The composition ratio of 0 to Ti by AES analysis was 1.7. When $TiO_{2}$ films were annealed at $400^{\circ}C$ for 30 min. in $O_{2}$ ambient, the optical transmittance of $TiO_{2}$ films at the wavelength range of $300{\sim}580$ nm was improved from 0 to 25%. When Se : Te films were annealed at $190^{\circ}C$ for 1 min., photosensitivity under illumination of 1000 lux was 0.75. The optical bandgap of Se : Te films was 1.7 eV. The structures of Se : Te films were the hexagonal with (100) and (110) orientation. The spectral response of a-Se was improved by the addition of Te, especially in the long wavelength region. The $TiO_{2}$/Se : Te heterojunction showed wide spectral response, and more improved one than that of a-Si film in the blue light region.

  • PDF