• Title/Summary/Keyword: 바퀴로봇

Search Result 200, Processing Time 0.031 seconds

Recognition of a Close Leading Vehicle Using the Contour of the Vehicles Wheels (차량 뒷바퀴 윤곽선을 이용한 근거리 전방차량인식)

  • Park, Kwang-Hyun;Han, Min-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2001
  • This paper describes a method for detecting a close leading vehicle using the contour of the vehi-cles rear wheels. The contour of a leading vehicles rear wheels in 속 front road image from a B/W CCD camera mounted on the central front bumper of the vehicle, has vertical components and can be discerned clearly in contrast to the road surface. After extracting positive edges and negative edges using the Sobel op-erator in the raw image, every point that can be recognized as a feature of the contour of the leading vehicle wheel is determined. This process can detect the presence of a close leading vehicle, and it is also possible to calculate the distance to the leading vehicle and the lateral deviation angle. This method might be useful for developing and LSA (Low Speed Automation) system that can relieve drivers stress in the stop-and-go traffic conditions encoun-tered on urban roads.

  • PDF

A Study on Wall-Crack Detection Using Machine Learning in Wall-Climbing Robot (벽면이동로봇에서의 머신러닝을 이용한 벽면 균열 검출에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Kim, Sang-Hun
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.423-426
    • /
    • 2019
  • 본 논문은 진공을 이용한 흡착방식과 바퀴형 이동방식을 사용하는 벽면이동로봇의 구성 및 벽면 균열 검출 알고리즘에 관한 연구로써, 카메라와 함께 임베디드 시스템을 구성하였으며 Convolutional Neural Network를 이용한 머신러닝 알고리즘을 통해 균열을 감지하고 검출된 균열의 영상과 위치정보를 서버(관리자 장치)로 전송하는 통신 환경을 구축하였다. 균열 검출 성능을 검증하기 위해 균열 데이터를 이용하여 실험하고 결과를 제시하였다.

Robot that can be driven on irregular roads with tracking and obstacl avoidance functions (회피 기능을 가진 장애물 극복 추종 주행 로봇)

  • Sung-Eun Kim;Ji-Eun Ahn;Seo-Hyun Park;Da-Yea Jeon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1041-1042
    • /
    • 2023
  • 본 논문에서는 고르지 않은 도로에서 사용자를 인식하고 따라다니며, 적재물을 안정적으로 운반하는 로봇을 제안합니다. 기존의 바퀴 구동 방식은 계단이나 울퉁불퉁한 지형에 부딪혔을 때 주행이 제한적입니다. 이를 해결하기 위해 저희는 로커-보기(rocker-bogie) 메커니즘을 적용했습니다. 비전을 통해 사용자를 특정하고, 크기에 따라 속도를 조절하며 추종합니다. 라이다는 주변의 장애물을 감지, 회피, 주행하는 데 사용되었으며, 가속도센서와 리니어 모터를 사용하여 밸런싱 기능을 구현했습니다.

A Small Robot Based on Hybrid Wheel-Track Mechanism (복합 바퀴-궤도 메커니즘 기반의 소형 로봇)

  • Lee, Jang-Woon;Kim, Byeong-Sang;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.545-551
    • /
    • 2009
  • A small guard robot working indoors or outdoors can be used to report various information on its environment to an operator. The guard robot should be small-sized and lightweight to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with various situations. To satisfy these requirements, this paper presents a small robot equipped with a novel hybrid wheel and track mechanism that can select wheels or tracks depending on the situation. The robot folds the tracks into the body in the wheel mode and only wheels are active with the tracks immobilized, which results in the fast moving speed. In the track mode, the tracks are extended to keep in contact with the ground. Furthermore, this research proposes the belt length maintenance mechanism by which the belt length is kept constant in either the wheel or track mode. Various experiments demonstrate that the proposed robot can move fast by using wheels on the smooth terrain and overcome obstacles by using tracks on the rough terrain.

Flexible Loop Wheel Mechanism for Intestine Movement (탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘)

  • Im, Hyeong-Jun;Min, Hyeon-Jin;Kim, Byeong-Gyu;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot (전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현)

  • Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • This paper describes a development of an network based remote surveillance system using omni-directional mobile robot. the proposed surveillance system can control a mobile robot to move and examines the given place closely while the conventional surveillance system uses a fixed camera. The mobile robot in the proposed system has three omni-directional wheels to move to any given direction freely. We also developed the proposed system as robot services using Microsoft's MSRDS for a user to control the mobile robot and monitor the remote scene captured from the robot. Finally we verified the feasibility and effectiveness of the proposed system by conducting the remote operating the mobile robot and monitoring experiments in a networked environment. We also conducted a color based object detection and motion detection on image sequences acquired from a remote mobile robot in an another PC in a network environment.

Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가 시스템 설계 및 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil;Jun, Kab-Jin;Yun, Ji-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1023-1028
    • /
    • 2010
  • Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.

A Research of the Development Plan for a Highly Adaptable FSR (Fire Safety Robot) in the Scene of the Fire (화재현장에 적합한 소방방재로봇의 개발 방향 탐색)

  • Kim, Kook-Rae;Kim, Jin-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • FSR has been placed and operated in the Daegu Fire & Safety Department on a trial basis since September 2009. This research proposes a direction for developing the robot, which will provide greater field adaptability and efficiency through analyzing in-depth interviews and surveys of firefighters who have operated the robot. Analysis has shown that an Assistant FSR is expected to enhance maneuverability and improve the performance of wheels, which will increase the capacity for navigating obstacles. The Field FSR needs improvements in convenience of control, making the weight lighter, and stabilization of radio communications to eliminate tangled wires. Overall satisfaction regarding the performance of robots currently in operation is low, while preference toward using the Assistant robot in the field is also low, shown at 8.4%. Therefore, it is urgently necessary to vitalize usage of FSR in the field so that early commercialization of the FSR will contribute to reinforce both growth and competitiveness of the domestic robotics industry.

Design and Control of Ball Robot capable of Driving Control by Wireless Communication (무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어)

  • Lee, Seung-Yeol;Jeong, Myeong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1236-1242
    • /
    • 2019
  • Recently, according to improvement of robot technology, research for mobile robot is increasing. Mobile robot having 2-wheels or 4-wheels is easy for straight driving but is difficult for direction change and rotation. So, ball robot having one contact point with base is interested by researchers. By characteristics of the one contact, ball robot is required the balancing and driving control. In this paper, smart phone application, which is usable for control by wireless communication, is proposed. The ball robot having the proposed smart phone application is designed and manufactured. Balancing and driving control by wireless communication is conducted. From the test, it is conformed that ball robot has the control performances as roll angle error is ±0.8deg, pitch angle error is ±0.7deg, x-axis position error is ±0.1m, and y-axis position error is ±0.08m for 1m driving control.

A Milli-Scale Double-sided Crawling Robot (양면 주행이 가능한 소형 12족 주행 로봇)

  • Kim, Sung-Hyun;Jung, Gwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2020
  • This paper presents a lightweight milli-scale crawling robot that can crawl on both sides, which was inspired by the movement of insects. This robot has an excellent ability to overcome obstacles, such as the narrow gaps and the rough terrain. In addition, the robot can crawl steadily and rapidly through triangular alternation, such as ants or cockroaches. The process of smart composite microstructures (SCM) was employed to make a lightweight robot structure. The SCM process replaced the conventional mechanical parts with flexure joints and composite links, which allows the weight of the robot to be reduced. In addition, the robot structure was robust against external impacts owing to the compliance of the constituent materials. Using the SCM process, the robot weighed only 32g with twelve legs in total on both sides. The robot showed a crawling speed of 0.52m/s on the front side and 0.42m/s on the backside.