• Title/Summary/Keyword: 바이오 폴리머

Search Result 144, Processing Time 0.02 seconds

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging (녹색합성법에 기인한 식품포장용 키토산-은나노 항균 복합필름의 개발)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.347-351
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.

A case of maxilla implant overdenture using Pekkton telescopic attachment with severe alveolar bone resorption (심한 치조골 소실이 있는 상악 무치악 환자에서 Pekkton telescopic attachment를 이용한 임플란트 피개의치 증례)

  • Park, Ha Eun;Lee, Won Sup;Lee, Cheol Won;Lee, Su Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.189-194
    • /
    • 2019
  • It is necessary to set the correct occlusal plane and to distribute the occlusal force uniformly considering the state of the opposing dentition during the prosthetic of the single edentulous patient with severe alveolar bone resorption. Implant supported overdenture is superior to complete denture in terms of maintenance and stability, and limited implants are used in fully edentulous patients with high alveolar bone resorption. Telescopic attachments using a newly introduced material based on poly-aryl-ether-ketone (PAEK) have the advantages of typical telescopic copping, excellent abrasion resistance, and are lighter and more economical than conventional implant overdentures. In this case, we restored maxillary arch with a implant retained overdenture using the telescopic attachment made of Pekktonand the mandible was restored with fixed implant prosthesis. Through these procedures esthetic aspects and functional outcomes were satisfactorily achieved.

Effect of Polymer Post-treatment on the Durability of 3D-printed Cement Composites (3D 프린터로 출력된 시멘트 복합체의 내구성에 미치는 폴리머 후처리의 영향)

  • Seo, Ji-Seok;Hyun, Chang-Jin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.20-29
    • /
    • 2022
  • In this study, in order to improve the durability of the cement composite printed with the ME type 3D printer, PDMS, sodium silicate, and a surface hardener were employed. Post-treatment was performed on 3D-printed cement composite by coating after immersion, and the degree of improvement in durability was evaluated. As a result, in all evaluations, the durability performances of the post-processed specimens were improved compared to those of the plain specimens. Water absorption resistance, chloride penetration resistance, and carbonation resistance of the PDMS treated specimens were improved by 36.3 %, 77.1 %, and 50.4 % when compared to plain specimens. Freeze-thaw resistance of the specimens treated with sodium silicate was found to be the most excellent, with an average enhancement of 47.5% compared to plain specimens. It was found that PDMS was the most efficient post-treatment materials for 3D-printed cement composite. However, as suggested in this study, the post-treatment method by coating after immersion may not be applicable to cement composite structures printed with a 3D printer in field. Therefore, a follow-up study needs to be preformed on the durability enhancing materials suitable for 3D printing.

The synthesis of dextran from rice hydrolysates using Gluconobacter oxydans KACC 19357 bioconversion (Gluconobacter oxydans 생물전환을 통한 쌀 가수분해물 유래 dextran 합성)

  • Seung-Min Baek;Hyun Ji Lee;Legesse Shiferaw Chewaka;Chan Soon Park;Bo-Ram Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • Dextran is a glucose homo-polysaccharide with a predominantly α-1,6 glycosidic linkage of microbial source and is known to be produced primarily by lactic acid bacteria. However, it can also be obtained through the dextran dextrinase of acetic acid bacteria (Gluconobacter oxydans). The dextrin-based dextran was obtained from rice starch using G. oxydans fermentation of rice hydrolysate, and its properties were studied. Both dextrin- and rice hydrolysate-added media maintained the OD value of 6 after 20 h of incubation with acetic acid bacteria, and the gel permeation chromatography (GPC) analysis of the supernatant after 72 h of incubation confirmed that a polymeric material with DP of 480 and 405, which was different from the composition of the substrate in the medium, was produced. The glucose linkage pattern of the polysaccharide was confirmed using the proton nuclear magnetic resonance (1H-NMR) and the increased α-1,4:α-1,6 bond ratio from 0.23 and 0.13 to 1:2.37 and 1:4.4, respectively, indicating that the main bonds were converted to α-1,6 bonds. The treatment of dextrin with a rat-derived alpha-glucosidase digestive enzyme resulted in a slow release of glucose, suggesting that rice hydrolysate can be converted to dextran using acetic acid bacteria with glycosyltransferase activity to produce high-value bio-materials with slowly digestible properties.