• Title/Summary/Keyword: 바이오 나노

Search Result 540, Processing Time 0.031 seconds

Nanomagnetics-biomedical Convergence for Next Generation Biomedical Assays (나노자성-바이오.메디컬 컨버젼스 연구)

  • Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.167-172
    • /
    • 2010
  • To meet on going challenges in nano-biomedical technology, the convergence of "spintronics", "biomedical" technology is a major break through in imaging, diagnosis and therapy, high-throughput genomic analysis. Especially magnetic bioassay is one of crucial devices for early diagnosis of specific analytes, point-of-care and U-health care application. In this paper, current status on high resolution magnetic sensors for bioassay and on-chip magnets for biomolecule transportation will be reviewed.

Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules (고효율 바이오물질 분리 및 농축을 위한 나노필터소자제작)

  • Huh, Yun Suk;Choi, Bong Gill;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.738-742
    • /
    • 2012
  • Here, we develop a new nanofilter device for the rapid and efficient separation of nanoparticles and biomolecules, exploiting the use of AAO mebrane with ordered nanopores in the range from 20 nm to 200 nm. Briefly, the chip comprises of a series of the upper and lower PDMS channels containing embedded inlet and outlet ports, and $50{\mu}m$ width microfluidic channel, and AAO membrane to be made the filtering zone. After assembling these components, the acrylate plastic plates were used to fix the device on the top and bottom side. When introducing the samples into the inlet ports of the upper PDMS channel, we were able to separate and concentrate the nanoparticles and target molecules at the filtering zone, and to elute the solutions containing the unwanted materials toward the lower PDMS channels normal to the direction of AAO membrane. To demonstrate the usefulness of the device we apply it to the SERS detection of nucleic acid sequences associated with Dengue virus serotype 2. We report a limit of detection for Dengue sequences of 300 nM and show excellent enhancement of Raman signals from the filter zone of the nanofilter device.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Colloidal Engineering for Nano-Bio Fusion Research (Nano-Bio 융합 연구를 위한 콜로이드 공학)

  • Moon, Jun Hyuk;Yi, Gi-Ra;Lee, Sang-Yup;So, Jae-Hyun;Kim, Young-Seok;Yoon, Yeo-Kyun;Cho, Young-Sang;Yang, Seung-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.647-659
    • /
    • 2008
  • Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.

Research Status and Prospectives of Magnetic Nanoparticles in Bio-medical Applications (바이오-메디컬 자성나노입자 연구의 현황과 전망)

  • Min, J.H.;Song, A.Y.;Kim, Y.K.;Wu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • Magnetic nanoparticles are widely used for bio-medical applications such as MRI contrast agents, drug-delivery systems, cell separation and hyperthermia, thanks to their unique magnetic properties and physico-chemical characteristics. In the early stage, efforts were focused on synthesis of uniform nanoparticles of desired dimension to achieve targeted, stable functionalities. Recently, it has been of great interest in dispersion of such nanoparitcles in aqueous solution and to render the nanoparticles bio-compatible with biofunctionality on request for utilization in bio-medical fields. In this paper, we survey the research status and give prospective on future work of magnetic nanoparticles for biomedical applications.

고감도 화학물질 검출을 위한 대면적 Ag 코팅 고분자 나노기둥 SERS 활성 기판 제작

  • Im, Ha-Na;Kim, An-Na;Lee, Ho-Nyeon;Kim, Hyeon-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.92.1-92.1
    • /
    • 2018
  • 표면증강 라만 산란(Surface Enhancement Raman Scattering, SERS) 기판의 경우, 규칙적인 배열을 갖는 나노구조 및 나노패턴 기판과 금속 나노구조의 고밀도 패킹이 고감도 화학물질 검출에 중요하다. 또한 폭넓은 응용 가능성에도 불구하고 기판 제작의 비용이 높고 재현성이 떨어져 상용화에 어려움을 겪고 있다. 본 연구에서는 다공성 알루미나(Anodic Aluminum Oxide, AAO)를 사용하여 Ag 나노입자가 코팅된 나노기둥 배열(Nanopillar array)을 갖는 고분자 필름의 SERS-active 기판을 제작하여 공정비용을 낮추고, 대면적화로 생산성을 높이고자 한다. 다단계 양극산화 공정과 복제 기술을 통해 다양한 지름과 높이를 갖는 맥주병 형상의 나노기둥 배열을 제조하였고, aspect ratio가 2.3인 나노기둥 배열에서 최대의 SERS 신호 강도와 높은 재현성을 확인하였다. SERS 신호의 세기는 Ag 나노입자가 코팅된 나노기둥 배열의 열처리 온도와 분석 물질의 농도에 따라 비례하며 이를 바탕으로 정량적인 고감도 진단, 바이오 화학 물질 센서에 매우 적합함을 알 수 있다.

  • PDF

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

미래 농업을 위한 바이오시스템공학

  • Ju, Chan-Yeong;Park, Seon-Ho;Park, Yeong-Ju;Lee, Do-Hyeon;Kim, Jang-Ho;Son, Hyeong-Il
    • ICROS
    • /
    • v.22 no.3
    • /
    • pp.43-57
    • /
    • 2016
  • 미래 농업은 생산, 유통, 소비 등의 모든 시스템이 연결되고 여기에 ICT 로봇 나노(NT) 바이오(BT)의 첨단기술을 결합해 자율적으로 운영되는 신성장동력 산업으로 진화될 것으로 예상된다. 이에 따라 농업은 정밀농업기술, 자동화 및 농업용 스마트 로봇 등의 다양한 공학기술의 접목과 함께 발달되고 있다. 최근에는 농업에 적용이 어려울 것이라고 예상되던 마이크로 나노 바이오공학의 접목도 시도되고 있으며 이에 따른 미래 농업의 전망은 아주 밝다고 볼 수 있다. 본 논문에서는 미래 농업을 위한 바이오시스템공학에 대해 자동화, 로봇화, 마이크로 나노농업공학 및 농업생명가공공학을 중점으로 주요기술들을 설명하고 국내 외 연구개발 동향을 살펴보고자 한다.