• Title/Summary/Keyword: 바이오 나노

Search Result 540, Processing Time 0.026 seconds

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

나노갭 소자를 이용한 금속 나노입자 검출

  • Lee, Cho-Yeon;Park, Jong-Mo;Park, Ji-Min;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.417.1-417.1
    • /
    • 2014
  • 본 연구에서는 갭 사이즈가 조절된 나노갭 소자[1]에 유기영동법을 이용하여 수용액 환경 내에 있는 금속 나노입자(금 나노입자)를 검출하였다. 수백 나노미터 사이즈로 제작된 나노갭 전극에 도금법으로 금을 성장시켜 갭 사이즈를 조절하고, 이로부터 전기장의 기울기를 극대화 할 수 있는 나노갭 소자를 제작함으로써 저농도 금 나노입자 검출의 효율성을 높였다. 제작된 나노갭 소자에 교류 신호를 이용한 유기영동법을 도입하여 수용액 환경 내 입자의 움직임을 제어하였다. 본 연구의 목표인 저농도 금 나노입자의 검출을 위해서는 100 kHz의 주파수를 이용하는 것이 가장 적절함을 실험을 통해 확인하였으며, 갭 사이즈가 조절된 나노갭 소자를 이용하여 전기장의 기울기를 극대화하고 입자의 움직임을 제어함으로써 50 aM의 저농도 금 나노입자를 검출할 수 있었다. 나노갭 소자를 이용한 금속 나노입자 검출에 관연 연구는 환경오염물질 검지용 입자센서 및 바이오센서 분야에 응용이 가능할 것으로 예상된다.

  • PDF

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

DNA Application Technology Trends (DNA 응용 기술 동향)

  • Lee, J.H.;Kim, D.Y.;Park, M.H.;Choi, Y.H.;Park, Y.O.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • 본고에서는 바이오 기술(BT: Bio Technology)의 주요 소재인 DNA(DeoxyriboNucleic Acid, 디옥시리보핵산)를 정보기술(IT: Information Technology)과 나노 기술(NT: Nano Technology)에 적용한 세 가지 DNA 응용 기술 동향에 대해 소개하였다. 먼저 1958년 프랜시스 크릭(Francis Crick)이 주장한 센트럴 도그마(Central Dogma)의 출발점인 DNA의 구조와 기능에 대해 최대한 자세히 소개하였고, DNA의 염기 서열 방식을 이용한 DNA 저장장치에 관해 설명하였다. 그다음 장에서는 DNA의 자기 조립(Self-Assembly) 능력과 자기 복제 능력 및 다른 분자를 인식하여 결합하는 특성을 정보기술에 적용한 DNA 컴퓨터에 대해 설명하였다. 마지막으로, 나노 단위의 DNA 구조를 응용한 나노 기술 중에서 다양한 나노구조물을 만드는 기술인 DNA 오리가미 기술에 대해 설명하였다.

  • PDF

Direct Patterning of Functional Molecules using Scanning Probe Microscope (주사탐침현미경을 이용한 기능성분자 패터닝)

  • Yun, Wan-Soo;Suck, Sung-Dae;Park, Hyung-Ju;Ha, Dong-Han;Chang, Won-Seok;Shin, Bo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1048-1051
    • /
    • 2003
  • 주사탐침현미경 (Scanning Probe Microsope, SPM)을 이용하여 직접 패터닝을 함으로써 hexanedithiol 분자의 임의 패턴을 금 표면에 형성하였다. 또한, hexanedithiol 분자는 양단에 thiol 그룹이 존재하여 금과 안정화 화학결합을 이룰 수 있으므로, 금 표면과결합을 이루고 있지 않는 상단의 thiol 그룹에 금 나노 입자를 고정함으로써 나노입자의 패턴을 제작하였다. SPM을 이용한 직접 패터닝 방법은 분자활성을 유지한 채로 임의 패턴을 수십 nm의 선폭으로 구현하는 것이 가능하므로, 나노입자 배열뿐만 아니라, 생화학물질의 패터닝을 통한 바이오 기술연구, 레지스트용 분자 패터닝과 시각 및 흡착 등의 계속적인 공정을 통한 다양한 나노구조 제작 등에 폭넓게 활용될 수 있다.

  • PDF

나노/마이크로 구조물의 기계적 특성 평가 기술

  • 이학주;최병익;오충석;김재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.14-14
    • /
    • 2004
  • 전자 공학 분야의 발전으로 인해 작은 구조물을 제작할 수 있는 리소그라피 (lithography) 기술이 급속하게 발전하고 있으며, 보다 작은 구조물에 대한 수요도 빠르게 증가하고 있다. 지난 수십 년간 반도체 분야에 적용 되어온 Moore's law에 의하면, 수년 내에 수십 나노 미터 크기의 특성 길이 (Critical Dimension)를 지닌 구조물을 이용하여 소자가 제작될 것 이 예견되고 있다. 반도체 공정을 응용하여 작은 구조물을 제작하는 기술은, 전자 공학 분야뿐만 아니라 광전자공학(optoelectronics) 분야, 양자 계산(quantum computing) 분야, 양자 계산(quantum computing) 분야, MEMS/NEMS, 바이오 센서(biosensor)분야 등에 다양한 응용성을 가질 것으로 예상된다.(중략)

  • PDF

Control of surface metal nanostructure with physical vapor deposition (물리기상증착을 이용한 금속표면 나노구조제어)

  • Jeong, Ji-Hye;Han, Min-A;Kim, Hyeon-Jong;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.251-251
    • /
    • 2015
  • 최근 질병 조기진단에 대한 사회적 요구가 높아짐에 따라 이에 대한 기술에 관심이 집중되고 있다. 그 중 표면증강라만산란(surface enhanced Raman scattering(SERS))을 이용하여 인체 내 소량의 바이오마커를 검출하는 연구가 활발히 진행중이다. 본 연구에서는 바이오마커의 검지감도를 최대치로 증가시키기 위해 SERS 기판의 나노구조를 최적화 하였다. SERS 기판 표면의 나노구조, 크기, 형상, 밀도 등에 따라 검지감도가 변화되기 때문에 이를 제어하기 위해 증착공정 변수에 변화를 주어 표면의 나노구조를 형성하였다. 이를 분석하기 위해 SEM, XRD를 사용하였으며 최적화된 SERS 기판을 활용하여 Rhodamine 6G의 신호가 $1{\times}10^5$ 이상의 enhancing factor를 확인하였다.

  • PDF

고투과성과 방오 기능을 갖는 태양전지 보호용 유리기판 제작

  • Sin, Ju-Hyeon;Han, Gang-Su;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.55.1-55.1
    • /
    • 2009
  • 나노 임프린트 리소그래피 기술은 고집적된 나노 구조물을 경제적으로 형성시킬 수 있는 유망한 차세대 리소그래피 기술 중 하나로써 광학 소자 뿐만 아니라 반도체, 디스플레이, 바이오 소자 등 다양한 분야에 적용이 가능하다. 본 연구에서는 태양전지 보호층으로 사용되는 유리 기판의 투과도 향상을 위해 나노 크기의 패턴을 형성하여 표면 반사를 최소화 하였으며, 보호층의 유지보수 부담을 줄이기 위해 패턴 표면에 방오 기능을 갖는 hydrophobic SAM(Self Assembled Mono-layer)을 형성하였다. 또한, SAM coated nano-sized pattern 형성을 위해 사용 된 $SiO_2$ 증착층과 SAM이 투과도에 끼치는 영향을 확인하기 위하여 bare glass, $SiO_2$ deposited glass, SAM coated glass 그리고 SAM/$SiO_2$ coated glass를 제작하였으며, 각각의 투과도를 측정하여 비교 분석 하였다. 투과도를 측정하기 위해 UV-Vis spectrophotometer를 사용하였으며, 방오 기능을 측정하기 위해 접촉각 측정장치를 사용하였다. 접촉각의 측정을 통해 이형처리(SAM coating)를 한 기판 표면이 소수성으로 바뀌어 물이나 먼지가 잘 묻지 않게 되는 것을 확인하였다.

  • PDF

Biosensor Electrode Manufacturing Technology Using Nano-carbon Materials (나노 탄소물질을 이용한 바이오센서 전극제조 기술)

  • Kim, Ji-Hyun;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Due to human life expectancy of the recent development of medical technology recently, it leads to increase the desire for improving the quality of human life, and grow health concerns and needs. Therefore, in order to prevent the occurrence of disease and to check up a disease quickly, research on the development of a biosensor has been actively processed. One of them, the nano-carbon materials, are very suitable for manufacturing biosensor due to their excellent electrical/mechanical properties. In this review, we introduced the recent studies about preparation methods of carbon electrodes using the carbon nano-materials for biosensors as well as its technological applications.