• Title/Summary/Keyword: 바이오메카트로닉스

Search Result 13, Processing Time 0.019 seconds

Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis (전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증)

  • Ham, Sangwoo;Choi, Ji-Woong;Jeong, Changho;Kim, Taeyun;Choi, Sangin;Jin, Glenn Young;Lee, Jeong Wan;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

Gear Strength Evaluation of Electric Axle for Construction Machinery using Simulation Model (Simulation Model을 이용한 건설기계용 전동식 액슬의 기어 강도 평가)

  • Han, Hyun-Woo;Park, Young-Jun;Lee, Ki-Hun;Oh, Joo-Young;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.44-53
    • /
    • 2021
  • As environmental issues have emerged worldwide, emission gas regulations have been strengthened. In the construction machinery sector, studies have been actively conducted to utilize the power source of electric motors owing to the increasing demand for zero emissions. In this study, the gear specifications of an electric axle for construction machinery were selected by considering the specifications of the motor, gear tooth contact pattern, and face load factor. The gear strength evaluation was performed at the system level using the simulation model. The bending and contact strength of the spiral bevel gears and the bending strength of the planetary gear set showed a safety factor of 1 or more. However, the contact strength of the planetary gear set showed a safety factor of 0.92. Conservative results were derived by performing the analysis under the rated load condition of the motor. However, the ratio of the equivalent torque to the rated torque of the motor was 45% or less, hence, it was determined that no difficulties should arise regarding the durability of the axle.

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.