• Title/Summary/Keyword: 바이오광

Search Result 231, Processing Time 0.028 seconds

신성장동력인 신재생에너지 '선점'경쟁 가열

  • 대한설비건설협회
    • 월간 기계설비
    • /
    • no.11 s.220
    • /
    • pp.29-37
    • /
    • 2008
  • 최근들어 국제 유가가 급등하고 지구 온난화 등 환경문제가 부각되면서 기존의 에너지를 대체하는 대안으로 신재생 에너지가 전 세계적으로 뜨거운 이슈로 떠오르고 있다. 더구나 온실가스 감축 등 본격적인 환경경제 시대가 도래하면서 환경친화적이고 고갈 염려가 없는 신재생에너지가 효과적인 대안으로 주목받고 있다. 또한 고유가 및 기술개발 가속화도 신재성에너지 시장 확대를 부채질하고 있어 신재생에너지에 대한 관심이 신성장동력으로 집중되고 있다. 이처럼 환경문제 해결에 대한 관심은 '선택'이 아닌 '필수'가 되었다. 우리나라도 국가 차원에서 이산화탄소 배출을 줄이기 위해 '저탄소 녹색성장' 정책을 마련하면서 신재생에너지 확대 보급을 위한 제도 및 대책이 새롭게 마련되고 있다. 건설산업은 대표적인 에너지 다소비업종에 속하기 때문에 이산화탄소 저감을 위해 에너지 저소비형 건축물 연구에 많은 투자를 하고 있으며, 신재생에너지를 이용한 생태토시 조성 등에 노력을 기울이고 있다. 특히 에너지를 다루는 기계설비는 이러한 신재생에너지와 밀접한 관련이 있기에 더욱 관심을 기울이고 있다. 태앙광을 비롯하며 지열, 풍력, 바이오 등 신재생에너지 개발은 물론 빗물이용 시스템 쓰레기 이송 설비와 같은 첨단과 환경이 조화를 이루는 아파트의 보급도 차츰 늘어나고 있는 추세다. '누구의 영역도 아닌' 곳이자 '누구의 영역도 될 수 있는' 신재생에너지가 설비건설업계에 확대, 보급되기 위해서는 설비건설업계의 관심이 집중되어야하며, 기술개발을 활발히 하여 선점경쟁에서 유리 한 고지를 접할 수 있을 것이다. 그렇다면 국내 신재생에너지의 개발 수준은 어디까지 왔을까? 이번 호는 그 현황을 집중 조명해 보고, 다음 호에는 풍력, 바이오에너지, 지열, 연료전자 수소 등을 하나씩 분석해 본다.

  • PDF

Gene Expression Profiles of Rainbow Trout Oncorhynchus mykiss after Salinity Challenge (염분 변화에 따른 무지개송어(Oncorhynchus mykiss)의 삼투조절 유전자 발현변화)

  • Choi, Young Kwang;Park, Heum Gi;Kim, Yi Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.676-684
    • /
    • 2021
  • Euryhaline teleost have extraordinary ability to deal with a wide range of salinity changes. To study the seawater adaptability of rainbow trout Oncorhynchus mykiss (body weight 638±54 g, length 38.6±2 cm) to salinity increase fish were transferred from freshwater to 7, 14, 21, 28 and 32 psu and checked for mortality over 5 days. No mortality was observed in 0-32 psu. In fish transferred to 0-32 psu, blood osmolality was maintained within physiological range. The changes of serum enzyme activities (aspartate transaminase, AST and alanine transaminase, ALT) showed no significant level during experimental period. To explore the underlying molecular physiology of gill and kidney responsible for body fluid regulation, we measured mRNA expression of five genes, Na+/K+/2Cl- cotransporter1 (NKCC1), aquaporin3 (AQP3), cystic fibrosis transmembrane conductance regulator (CFTR), glucocorticoid receptor (GR) and growth hormone receptor (GHR) in response to salt stress. Based on our result, rainbow trout could tolerate gradual transfer up to 32 psu for 5 days without mortality under physiological stress. This study suggests to alleviate osmotic stress to fish, a gradually acclimation to increasing salinity is recommended.

Effects of Shading on Growth of 1-year-old Cornus controversa H$_{EMSL}$, Seedlings (피음이 층층나무 1년생 유묘의 생장에 미치는 영향)

  • 최재형;홍성각;김종진
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • This study was carried out to investigate the effects of shading on the growth of 1 -year-old seedlings of Cornus controversa. The height growth was highest in relative light intensities of 100% and 50%, but relative growth rate in 50% was higher than that in 100% treatment. The growth did not occur under 9% relative light intensity. The root collar diameter growth at different light intensities is similar to height growth. The leaf area was highest in 50% relative light intensity, and the leaf area under the light intensity was small compared with the control. SLA and LAI of seedlings increased with decreasing relative light intensity. The LAR and LWR of seedlings increased with decreasing light intensity, but LWR decreased at 9% relative light intensity. The dry weight of root, stem, leaf and branch, and the number of branch and leaf decreased with decreasing relative light intensity. T/R ratio was highest in 17% and 30% relative light intensity. Lateral root growth decreased with decreasing light intensity except for that in 50% light intensity.

  • PDF

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device (마이크로 코일-채널과 GMR-SV 소자를 이용한 적혈구-자성비드 검출 특성연구)

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of $RBC+{\mu}Beads$ is controlled by the electrical AC input signal. The $RBC+{\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Recent Advances in 3D/4D Printed Electronics and Biomedical Applications (3D/4D 프린트된 전자기기 및 바이오메디컬 응용기술의 최근 발전)

  • Hyojun Lee;Daehoon Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • The ability of 3D/4D printing technology to create arbitrary 3D structures provides a greater degree of freedom in the design of printed structures. This capability has influenced the field of electronics and biomedical applications by enabling the trends of device miniaturization, customization, and personalization. Here, the current state-of-the-art knowledge of 3D printed electronics and biomedical applications with the unique and unusual properties enabled by 3D/4D printing is reviewed. Specifically, the review encompasses emerging areas involving recyclable and degradable electronics, metamaterial-based pressure sensor, fully printed portable photodetector, biocompatible and high-strength teeth, bioinspired microneedle, and transformable tube array for 3D cell culture and histology.

Effect of Photo Bioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris (도광판 삽입 반응기가 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.467-472
    • /
    • 2012
  • The aim of this study was to investigate the efficiency of optical panel (OP) on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was 3~$8{\mu}m$, having round in shape. The cells of C. vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three light samples were prepared to evaluate the efficiency of OP on the growth rate of C. vulgaris; OP with LED (Light Emitting Diode) (Run 1), Fluorescent light (Run 2) and LED (Run 3). The specific growth rate of C. vulgaris for Run 1 was found to be 14 times and 5 times faster than Run 2 and Run 3, respectively. In addition, the average biomass of C. vulgaris for Run 1 was measured 11.79 g/L in 11 days. This means that the biomass for Run 1 was reached 30 times and 6.5 times higher than Run 2 and Run 3, respectively. This may be due to the fact the OP was increased the light uniformity and hindered the shading effects in photobioreactor. Therefore, the growth rate of biomass in photobioreactor with OP is compared better than the without OP used other photobioreactor.

Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm (Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과)

  • Kim, Myunghwan;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • The purpose of this study is to investigate the antibacterial effects of indocyanine green (ICG) and near-infrared diode lasers on multispecies biofilms. Multispecies biofilms of Streptococcus mutans, Lactobacillus casei and Candida albicans were treated with different irradiation time using photosensitizer ICG and 808 nm near-infrared diode laser. Colony forming unit (CFU) was measured, and qualitative evaluation of biofilm was performed with confocal laser scanning microscopy (CLSM). Temperature measurement was conducted to evaluate photothermal effect. In the groups using ICG and diode laser, reduction in CFU was statistically significant, but the difference in antibacterial effect on L. casei and C. albicans with irradiation time was not significant, and similar results were confirmed with CLSM. Groups with ICG and diode laser showed higher temperature elevation than groups without ICG, and results of measured temperature were similar to the range of hyperthermia. In conclusion, ICG and near-infrared diode laser showed antibacterial effects on multispecies biofilms, but studies on protocol are necessary for clinical application.

Effect of Potassium Iodide on Erythrosine-Mediated Photodynamic Therapy on Streptococcus Mutans Biofilms (Streptococcus mutans 바이오필름에 대한 에리스로신 매개 광역동 치료 시 potassium iodide의 효과)

  • Yongsoon, Kim;Howon, Park;Juhyun, Lee;Haeni, Kim;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.321-328
    • /
    • 2022
  • The aim of this in-vitro study is to evaluate the effect of potassium iodide (KI) on erythrosine-mediated photodynamic therapy (PDT) against Streptococcus mutans biofilms. S. mutans ATCC 25175 was cultured to form a biofilm on a hydroxyapatite disk. After diluting erythrosine to 20 μM and KI to 10, 50, and 100 mM, respectively, PDT was performed. The number of surviving bacteria was calculated as colony forming units (CFU)/mL and the statistical significance of the difference between groups was confirmed by Bonferroni post-hoc analysis. Cell viability was visually evaluated using confocal laser scanning microscopy (CLSM). As a result of the experiment, a significant decrease (p < 0.05) in CFU was observed in the experimental groups in which PDT was performed after applying KI regardless of the concentration of KI. In addition, a significant reduction (p < 0.05) in CFU was observed in the experimental group to which 100 mM KI was applied compared to 10 mM KI. The same results were confirmed when observing CLSM. KI significantly improved the efficacy of erythrosine-mediated PDT on S. mutans biofilms at all concentrations. This may compensate for the low sensitivity of PDT to biofilm-state bacteria strains, but it is necessary to establish an optimal clinical protocol through further research.

Signal Analysis of Optical Biosensor to Detect Peroxide Using Electrically Controlled Release System (전기적 방출 조절 시스템을 이용한 광 페록사이드센서의 개발)

  • Min, Jun-Hong;Lim, In-Hee;Kim, Hyo-Han;Lee, Sang-Beak;Choi, Jeong-Woo;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • The optical biosensor using the electrically controlled release of reactive reagent is developed for the detection of peroxide. Rapid degradation of polymer complex of PEOx and PMAA occurs as the applied current increases and thus released amount of HPA increases. The degradation velocity of polymer and the amount of HPA released are linearly proportional to the applied current. Peroxide is reacted with the released reagent by peroxidase and then the product, a fluorescent dimer DBDA, is formed. The monochromic light from light source (150W Xe arc ramp) excites the DBDA and the excited light is transmitted through an optical fiber to be detected by a photodiode array. The change of fluorescence intensity is related to the change of peroxide concentration. The peroxidase is entrapped in Ca-alginate get on the inner surface. The biosensor has the linear signal range of 0.025mM-10.mM peroxide. By applying the step function of peroxide, reproducibility of biosensor has been investigated. The mathematical model is constructed by the combination of enzyme kinetics with reactor flow model. Good agreement is obtained between the experimental result and model prediction in the sensor signal.

  • PDF