The biased zero-error probability and its related algorithms require heavy computational burden related with some summation operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased Gaussian and impulsive noise.
The criterion of zero-error probability provides a limitation on error probability functions being used for adaptive systems when the error samples are shifted by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based on the proposed criterion yielded zero-centered and highly concentrated error samples without disturbance in the environments of strong impulsive and DC-bias noise.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.3
/
pp.1416-1421
/
2013
In this paper, the Euclidean distance between the probability density functions (PDFs) for biased errors and a Dirac-delta function located at zero on the error axis is proposed as a new performance criterion for adaptive systems in non-Gaussian noise environments. Also, based on the proposed performance criterion, a supervised adaptive algorithm is derived and applied to adaptive equalization in the shallow-water communication channel distorted by severe multipath fading, impulsive and DC-bias noise. The simulation results compared with the performance of the existing MEDE algorithm show that the proposed algorithm yields over 5 dB of MSE enhancement and the capability of relocating the mean of the error PDF to zero on the error axis.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.619-621
/
2005
은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.
근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.917-919
/
2009
본 연구에서는 산화막 두께에 따른 20nm 이하 MOSFET의 전류-전압 특성 곡선 분석하였다. 산화물 내의 등가 포획 전하는 가우시안 함수를 사용하였다. 채널의 길이가 20nm 이하인 LDD MOSFET를 설계하여 사용하였고, 소자를 시뮬레이션 하기 위하여 실리콘 공정 디바이스 시뮬레이터인 MicroTec의 SemSim을 사용하였다. SemSim은 디바이스 시뮬레이터로써 입력 바이어스에 의해 공정 시뮬레이션인 SiDif와 디바이스 조립인 MergIC에 의해 소자를 시뮬레이션 한다. 산화막의 두께를 2nm, 3nm, 4nm로 시뮬레이션 한 결과 산화막의 두께가 얇아짐에 따라 드레인에 흐르는 전류가 증가함을 알 수 있었다.
Passive sensors such as Laser Range Finder(LRF) and Forward Looking Infrared(FLIR) camera frequently used for tracking aircraft landing produce the measurements of elevation angle contaminated by large noise due to the exhaust plume disturbance. This results in poor tracking performance if the extended Kalman filter is used for estimation of the range and elevation which are corrupted by the non-Gaussian noise such as plume disturbance. In this paper, an adaptive estimation filter and the extended Kalman filter is combined to produce a combination-type filter. In this approach the adaptive filter is used for the plume-type disturbance noise and the extended Kalman filter is utilized for the measurement of Gaussian type. The proposed combination filter is effective for the trajectory estimation of landing aircraft under the influence of unknown bias and numerical simulations illustrate the performance of the proposed filter.
The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.