• Title/Summary/Keyword: 바우 스러스터

Search Result 2, Processing Time 0.017 seconds

A Development of New Device for Bow Thruster Tunnel Grids (바우 스러스터 터널 그리드 개선을 위한 연구)

  • Kim, Sung-Pyo;Park, Jae-Jun;Jun, Dong-Su;Kim, Yong-Soo;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.304-312
    • /
    • 2006
  • For protection of the thruster against mechanical damage and reduction of tunnel resistance at ship forward speed, the tunnel grids are normally installed. Some of ship operators however, have a strong distrust of the protective function of the tunnel grids and so they do not want to install the protective grids for higher thruster efficiency. Since the grids should be installed at very close to the side shell as far as possible in due consideration of flow direction to minimize additional resistance induced by tunnel openings, it has been too hard and time consuming work to install the grids on the curved and chamfered tunnel entrances considering its relatively low resistance reduction effect. DSME (Daewoo Shipbuilding & Marine Engineering Co., Ltd) developed a substituting device named TG (Tunnel Guides) for bow thruster tunnel grids which is characterized by higher resistance reduction, higher thruster efficiency and easy to installation. This paper provides the principle idea of the TG with short history of the development using CFD calculations and model experiments in MOERI (former KRISO).

A study on appropriate ship power system for pulse load combine with secondary battery (펄스부하에 적합한 이차전지 연동형 선박 전력시스템에 관한 연구)

  • Oh, Jin-Seok;Lee, Hun-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.962-968
    • /
    • 2013
  • Problem of greenhouse gases associated with global warming and the world rise in fuel oil prices due to the depletion of fossil fuel has attracted attention. For this reason, maritime transport business, has shown interest in green-ship technology to reduce the consumption of fuel and reduce greenhouse gas for environmental protection. Power system of the ship is one of the most important factors for safe operation. Therefore, at design of ship power system, most of existing vessel used comparative large capacity generator in order to respond peak load such as bow thruster, crane and etc. In the navigation of ship, marine generators most would be operated at low load operation. In the low load operation of the generation rate of 50% or less, the operation efficiency of the generator it deteriorated, to consume more fuel oil. It also, it means that adversely effect the life of the generator. In this paper, studied how to apply for a secondary battery in container ship that relatively frequent arrival and departure in port. As a result, in order to apply the secondary battery to increase the operating efficiency of the generator during the voyage, it was confirmed that it is possible to reduce fuel consumption.