• Title/Summary/Keyword: 바닥 두께

Search Result 441, Processing Time 0.031 seconds

Improvement of Direct Measurement of Bottom Shear Stress Using Shear Plate (전단평판을 이용한 바닥전단응력의 직접 측정 방법의 개선)

  • Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.70-70
    • /
    • 2016
  • 하천시설물 설계, 시공 및 관리에 있어서 바닥전단응력은 매우 중요하다. 예를 들어, 호안 등 시설물의 허용 소류력을 계산하거나, 하천의 유사량을 예측하는 데 있어서 바닥전단응력이 기준으로 쓰인다. 정상 등류의 경우, 수로 내 수체에 작용하는 중력과 수로 바닥 및 측면에 작용하는 마찰력의 평형을 고려함으로써 바닥전단응력을 산정할 수 있다. 본 연구에서는 식생을 제외한 아크릴수로에서의 전단판의 움직임을 이용한 바닥전단응력 측정장치를 설계, 교정 및 검증을 실시하였다. 이 전단판은 수체와 바닥면에서 발생하는 마찰력에 의해 변위가 발생하고 이 변위를 바닥전단 응력으로 산정하였다. 직접 측정한 바닥전단응력은 기존에 연구된 두 가지 방법과 비교하여 검증하였다. 비교 검증을 위한 실험은 폭 0.3 m, 길이 10 m인 고속수로에서 Froude수 1이상, Reynolds수 20000이상의 사류이면서 난류인 상태로 실험을 진행하였으며 유속은 PIV을 이용하여 측정하였다. 비교 검증을 위한 첫 번째방법은 Reach-avrage공식을 기초로 manning의 평균 유속 공식을 이용한 바닥전단응력을 산정하는 방법으로 일반적으로 간단한 경험식을 이용하여 바닥 전단응력을 산정하는 방법이다, 두 번째는 Reynolds stress를 산정하는 방법으로 PIV를 통해 흐름방향의 연직프로파일의 유속을 측정 한 후 레이놀즈 분해법에 의해 산정된 난류 강도를 측정하여 Reynolds stress를 산정한 후 Shear stress를 산정하는 방법을 사용하였다. 마지막으로 본 연구에서 가로 0.14 m, 세로 0.14 m의 전단판으로 구성된 바닥전단응력 측정장치를 개발하여 실험을 진행하면서 앞에서 언급한 두가지 방법을 측정하는 동시에 장치를 이용하여 바닥전단응력을 직접측정하여 총 3가지 바닥전단응력을 비교하였다.

  • PDF

Probability Based Determination of Slab Thickness Satisfying Floor Vibration Criteria (수직진동 사용성 기준을 고려한 바닥판 두께 제안)

  • Lee Min-Jung;Nam Sang-Wook;Han Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.687-694
    • /
    • 2005
  • In current design practice, the thickness of the floor slab has been determined to satisfy requirement for deflection control. However, previous study shows that the floor thicknesses in residential buildings may not satisfy the floor vibration criteria, even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. This study attempts to propose slab thickness for flat plate slab systems that satisfies floor vibration criteria against occupant induced floor vibration(heel drop load). Two boundary conditions(simple and fixed support), three square flat plates(4, 6, 8m), and five concrete strength($18\~30$ MPa) are considered. Since there are large uncertainties in loading and material properties, probabilistic approach is adopted using Monte-Carlo simulation procedures.

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

A Efficient Vibration Analysis Method for the Cooncrete-Steel Deck Slab (콘크리트와 강제데크의 합성 바닥판의 실용적인 진동해석 방법)

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.91-100
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stiffness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of topping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the stiffness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method can efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

  • PDF

Fatigue strength of stud shear connector considering bedding layer thickness in precast deck composite bridges (프리캐스트 바닥판 합성형 교량에서의 베딩층의 두께를 고려한 전단연결재의 피로강도)

  • Ryu, Hyung Keun;Shim, Chang Su;Chung, Chul Hun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • A shear connection in composite bridges with precast decks has considerable characteristics different from cast-in-place deck bridges such as shear pocket and bedding layer. Thus, it is necessary to build design basis of the shear connector in precast decks through the experiments. In order to estimate fatigue life of shear connector in precast deck bridges, push-out fatigue tests were conducted with parameter, bedding layer thickness. As a result of the tests, failure modes of shear connector were observed. Consequently, empirical S-N curve equations of stud shear connector in precast deck bridges were proposed in this paper.

Effect of Low Temperature Annealing on the Magnetoresistance in Co/Cu Artificial Superlattice (Co/Cu인공초격자에서 저온 열처리가 자기저항에 미치는 영향)

  • 민경익;송용진;이후산;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.305-309
    • /
    • 1993
  • Thermal stability of Co/Cu artificial superlattice (AS) prepared by RF-magnetron sputtering and the effect of low temperature annealing on the magnetoresistance of the AS have been investigated in this work. Dependence of annealing behavior on the Cu spacer thickness, Fe underlayer thickness, and kind of the underlayer was examined and the relationship between the interfacial reaction and magnetoresistance was studied. It turned out that when Co/Cu AS was annealed at low temperature ($<450^{\circ}C$), the magnetoresistance could increase in the case of AS with thick spacer Cu ($20~25\AA$) layer, whereas it decreased in the case of AS with thin spacer Cu ($7\AA$) layer, which of the former is in contrast with previous reports and the latter in consistent with them. The increase of magnetoresistance is due to increase of interfacial atomic sharpness, which is supported by low angle X-ray diffraction analysis. The thermal stability of Co/Cu AS was better in the case of thick Fe underlayered AS. Interfacial reaction (separation of intermixed Co and Cu) could be observed at lower temperature for (200)-textured samples than for (111)-textured samples, which can be interpreted in terms of interdiffusion kinetics depending on the crystallographic orientation.

  • PDF

Effect of abdominal drawing in maneuver with pelvic floor exercise on abdominal muscle thickness measured by ultrasonography (골반 바닥근육 운동을 이용한 복부 드로잉-인이 초음파 측정 방법을 이용한 복부 근육 두께에 미치는 영향)

  • Choi, You-Jeong;Son, A-Reum;Hong, Ji-Heon;Yu, Jae-Ho;Kim, Jin-Seop;Lee, Dong-Yeop
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.93-100
    • /
    • 2019
  • The purpose of this study is to measure abdominal muscle thickness when Pelvic Floor contraction (PFC) and Abdominal Drawing-In Maneuver (ADIM) were separately applied and combined exercise was applied and to compare the effects of the exercise. After the pre-investigation, the subjects were given a explanation of the purpose and the method of the research and then an experiment was conducted targeting a total of 30 subjects, who voluntarily agreed with this. Thicknesses of internal oblique (IO), transverse abdominis (TrA) and external oblique (EO) were measured during a break and then three types of exercise. All the measured values of the experiment were processed using Repeated measure ANOVA, and Bonferroni method was applied. As a result, the three types of exercise showed significant differences in thicknesses of IO, TrA and EO. In conclusion, the subjects had the thickest muscles and muscular activity increased during PFC+ADIM, compared to PFC and ADIM.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.