• Title/Summary/Keyword: 밀집 영역

Search Result 166, Processing Time 0.025 seconds

Ablation characteristics of femtosecond laser pulse-induced pressure waves in biological tissue (펨토초 펄스로 인한 조직 제거시 생성된 압력파의 특성 연구)

  • ;A. Komashko;M. Feit;A. Rubenchik
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.244-245
    • /
    • 2002
  • 1 picosecond 보다 짧은 펄스길이를 갖는 초단파길이 레이저 펄스 (Ultrashort laser pulse, USLP)를 이용한 물질의 절제 (ablation)는 여타 nanosecond 영역의 레이저 절제와 많은 차이를 보인다(1). USLP는 순간 파워가 매우 높기 때문에 직접적으로 물질의 원자를 분리시켜 자유전자를 형성한다 이들 자유전자는 일반 선형흡수체 (linear absorbing chromophore)보다 흡수계수가 몇 십 배로 높아 대부분의 펄스 에너지가 표면 100-200 m 이내의 극히 작은 지역에 밀집되게 된다. (중략)

  • PDF

혼잡해역 해상교통밀도 산출 모델 개발에 관한 연구

  • Kim, Gwang-Il;Jeong, Jung-Sik;Park, Gye-Gak;Choe, Un-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.71-73
    • /
    • 2013
  • 선박 및 VTS에서 선박교통량이 밀집되는 혼잡해역의 선박교통밀도 평가는 중요하다. 본 연구에서는 선박 충돌 회피를 위한 적절한 반경인 Ship Domain 영역과 혼잡구역 내 선박 체류시간 및 전 방위 통항류를 고려하여 혼잡해역의 항로가동률 및 실시간 해상교통밀도 산출 모델을 제안하고자 한다. 또한 제안된 모델식을 기반으로 시뮬레이터를 프로그래밍하여, 실 해역 해상교통 데이터를 적용하여 제안한 모델식의 유효성을 평가하고자 한다.

  • PDF

Technology Trends on AeroMACS System (AeroMACS 시스템의 기술동향)

  • Sohn, K.Y.;Park, Y.O.
    • Electronics and Telecommunications Trends
    • /
    • v.27 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • 세계가 하나로 이어지는 글로벌화 경향에 따라 항공교통량의 지속적인 성장과 그에 따라 보다 체계적이고 안전한 비행작업을 위하여 항공기에서 요구되는 데이터 트래픽이 증가함으로 인하여 높은 데이터 전송률과 안정적인 성능을 보이는 새롭고 더욱더 효율적인 고속 광대역 통신 시스템의 필요성이 부각되고 있다. 이와 관련하여 본고에서는 미래 고속 항공 데이터 통신 시스템에 대한 결정사항 중에서 airport 영역, 특히 고밀집 지역에서 사용되는 IEEE 802.16e-2009 규격을 기반으로 하는 무선통신 시스템인 AeroMACS 시스템 (Aeronautical Mobile Airport Communications System)에 대하여 살펴보고자 한다.

  • PDF

Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet (잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual Dense Network), in which the initial feature information is transmitted to the last layer using residual dense blocks, and subsequent layers are restored using input information of previous layers. However, if all hierarchical features are connected and learned and a large number of residual dense blocks are stacked, despite good performance, a large number of parameters and huge computational load are needed, so it takes a lot of time to learn a network and a slow processing speed, and it is not applicable to a mobile system. In this paper, we use the residual dense structure, which is a continuous memory structure that reuses previous information, and the residual dense channel attention block using the channel attention method that determines the importance according to the feature map of the image. We propose a method that can increase the depth to obtain a large receptive field and maintain a concise model at the same time. As a result of the experiment, the proposed network obtained PSNR as low as 0.205dB on average at 4× magnification compared to RDN, but about 1.8 times faster processing speed, about 10 times less number of parameters and about 1.74 times less computation.

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

DBSCAN-based Energy-Efficient Algorithm for Base Station Mode Control (에너지 효율성 향상을 위한 DBSCAN 기반 기지국 모드 제어 알고리즘)

  • Lee, Howon;Lee, Wonseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1644-1649
    • /
    • 2019
  • With the rapid development of mobile communication systems, various mobile convergence services are appearing and data traffic is exploding accordingly. Because the number of base stations to support these surging devices is also increasing, from a network provider's point of view, reducing energy consumption through these mobile communication networks is one of the most important issues. Therefore, in this paper, we apply the DBSCAN (density-based spatial clustering of applications with noise) algorithm, one of the representative user-density based clustering algorithms, in order to extract the dense area with user density and apply the thinning process to each extracted sub-network to efficiently control the mode of the base stations. Extensive simulations show that the proposed algorithm has better performance results than the conventional algorithms with respect to area throughput and energy efficiency.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

RAH-tree : A Efficient Index Scheme for Spatial Data with Skewed Access Patterns (RAH-tree : 편향 접근 패턴을 갖는 공간 데이터에 대한 효율적인 색인 기법)

  • Choi Keun-Ha;Lee Seung-Joong;Jung Sungwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.31-33
    • /
    • 2005
  • GPS및 PDA의 발달로 인해서 위치 기반 서비스(LBS), 차량항법장치(CNS), 지리정보시스템(GIS)등 공간 데이터를 다루는 응용프로그램들이 급속하게 보급되었다. 이러한 응용프로그램은 높이 균등 색인 기법을 사용하여 원하는 데이터에 대한 색인을 제공하였다. 그러나 모든 공간 객체는 서로 상이한 접근 빈도를 가지고 있음에도 불구하고 기존의 공간색인 기법은 접근 빈도를 고려하지 못하는 단점을 가지고 있었다. 또한 기존의 빈도수만을 고려한 공간 객체의 색인 방법은 접근 빈도에 따른 편향성(skewed)은 제공하지만 공간 객체에 대한 지역성을 반영하지 못한다. 본 논문에서는 밀집되어 있는 공간 객체의 접근 빈도를 반영해서 편향된 색인 트리를 생성하는 기법을 제안한다. 이형 클러스터링으로 분포되어 있는 전체 영역에 대해서 Zahn의 클러스터링 알고리즘을 변형시켜서 다단계 세부영역을 구분한다. 이렇게 구간된 세부영역에 대해서 거리적 인접성과 접근 빈도수의 합을 이용해서 색인 트리를 생성한다. 다단계로 구성된 전체영역에 대해서 하향식 방식으로 편향된 색인 트리를 생성함으로써, 접근 빈도가 높은 공간 객체에 대해서 빠른 탐색이 가능하게 한다.

  • PDF

A Face Detection Method using Gradual Expansion of Skin Color Range (피부색 범위의 점진적 확장에 의한 얼굴 검출 방법)

  • 문대성;한영미;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.396-405
    • /
    • 2001
  • Usually it is difficult to extract facial regions in a complex image by using only a predetermined skin color. Expecially, it is more difficult to separate them from background regions that contains the skin color. This paper proposes a face detection method by using gradual range expansion of an initial skin color. By analyzing the skin color distribution several images that are collected in the Web, the range of dense distribution is selected as the range of the initial skin color. In each expanding step, expanded regions in the image are tested whether they can be actual facial regions by using the information of the shape of general face and the location of face organs. The shape of general face is modeled as an ellipse and the aspect ratio of its bounding box is used to define the shape constraint for faces. Only the eyes and lips are used as the face organs, which can be easily detected by extracting horizontal edges in the expanded regions. through several experiments, it is confirmed that the proposed method can detect exactly not only faces having partly distorted regions by highlight but also faces neighboring similar color regions.

  • PDF

Vehicle Detection in Dense Area Using UAV Aerial Images (무인 항공기를 이용한 밀집영역 자동차 탐지)

  • Seo, Chang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.693-698
    • /
    • 2018
  • This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.