• Title/Summary/Keyword: 밀리미터 크기

Search Result 23, Processing Time 0.02 seconds

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

A pilot study on measuring the human cortisol using an electronic device (전자소자를 이용한 인간 감성지표 코티졸 검출에 관한 기초연구)

  • Lee, Hee-Jo;Lee, Jung-Hyun;Hwang, Yoo-Sun;Jung, Hyo-Il
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.531-536
    • /
    • 2011
  • The precise measurement of human emotion is of pivotal importance in the field of emotion science. Based on the perspective of psychoneuroimmunoendocrinology, human emotion is now considered to be measurable by body fluid. The biological molecule cortisol, which is known for the stress hormone, has been widely investigated to help researchers to estimate the stress loaded on human body. Until now, several measurement techniques such as High Performance Liquid Chromatography (HPLC), fluorometric assay, and reverse phase chromatography have been developed. However, since these measurements are expensive, take relatively long time for an operation, and they are not portable, they are not appropriate for POCT (point of care testing). In this paper we demonstrate the performance of a miniaturized-microwave resonant device in the measurement of cortisol. Our method has many advantages in that it requires a small volume of sample, has fast response time, is easy to operate and needs no labeling process. Besides, it will shed a light on the measurement techniques for emotion science.

  • PDF

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.