• Title/Summary/Keyword: 밀러지수

Search Result 5, Processing Time 0.017 seconds

Structural and Optical Characteristics of ZnS:Mn Thin Film Prepared by EBE Method (전자빔 증착법으로 제작된 ZnS:Mn 박막의 구조 및 광학적 특성)

  • 정해덕;박계춘;이기식
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1005-1010
    • /
    • 1997
  • ZnS:Mn thin film was made by coevaporation with Electron Beam Evaparation(EBE) method. And structural and optical characteristics of ZnS:Mn thin films were investigated by substrate temperature annealing temperature and dopant Mn. When ZnS:Mn thin film was well deposited with cubic crystalline at substrate temperature of 30$0^{\circ}C$ its surface index was [111] and its lattice constant of a was 5.41$\AA$. Also When ZnA:Mn thin film was well made with hexagonal crystalline at substrate temperature of 30$0^{\circ}C$annealing temperature of 50$0^{\circ}C$and annealing time of 60min its miller indices were (0002) (1011), (1012) and (1120). And its lattice constant of a and c was 3.88$\AA$and 12.41$\AA$ respectively. Finally hexagonal ZnS:Mn thin film with dopant Mn of 0.5wt% had fundamental absorption wavelength of 342nm. And so its energy bandgap was about 3.62eV.

  • PDF

Effect of heat treatment on mechanical properties of overlay welds (육성 용접부의 기계적 성질에 미치는 열처리조건의 영향)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF

Heavy Carbon Incorporation into High-Index GaAs (고농도로 탄소 도핑된 높은 밀러 지수 GaAs)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.717-720
    • /
    • 2003
  • Heavily $p^{ +}$-typed ($10^{20}$ $cm^{-3}$ ) GaAs epilayers have been grown on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A by a low-pressure metalorganic chemical vapor deposition. Carbon (C) tetrabromide (CBr$_4$) was used as a C source. At moderate growth temperatures and high V/III ratios, the hole concentration of C-doped GaAs epilayers shows the crystallographic orientation dependence. The bonding strength of As sites on a growing surface plays an important role in the C incorporation into the high-index GaAs substrates.

Creep Characterization of 9Cr1Mo Steel Used in Super Critical Power Plant by Conversion of Stress and Strain for SP-Creep Test (SP-Creep 시험의 응력 및 변형률 환산에 의한 초임계압 발전설비용 9Cr1Mo강의 크리프 특성 평가)

  • Baek, Seung-Se;Park, Jung-Hun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1034-1040
    • /
    • 2006
  • Due to the need of increasing thermal efficiency, supercritical pressure and temperature have been utilized in power plants. It is well known that 9Cr1Mo steel is suitable fer use in power plants operating at supercritical conditions. Therefore, to ensure the safety and the soundness of the power plant, creep characterization of the steel is important. In this study, the creep characterization of the gCr1Mo steel using small punch creep(SP-Creep) test has been described. The applied load and the central displacement of the specimen in SP-Creep test have been converted to bearing stress and strain of uc, respectively. The converted SP-Creep curves clearly showed the typical three-stage behavior of creep. The steady-state creep rate and the rupture time of the steel logarithmically changed with the bearing stress and satisfied the Power law relationship. Furthermore, the Larson-Miller parameter of the SP-Creep test agreed with that of the tensile creep test. From the comparison with low Cr-Mo steels, the creep characteristics of 9Cr1Mo steel proved to be superior. Thus, it can be confirmed that the 9Cr1Mo steel is suitable for supercritical power plant.

Reconstruction Change of Si(5 5 12) Induced by Selective Bi Adsorption (Bi의 선택적 흡착으로 유도된 Si(5 5 12) 표면의 재구조변화)

  • Cho Sang-Hee;Seo Jae-M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.152-161
    • /
    • 2006
  • In order to test the capacity of Si(5 5 12) as a potential template for nanowire fabrication, Bi/Si(5 5 12) system has been studied by STM. With Bi deposition, Si(5 5 12) has been transformed to Si(3 3 7) terrace. Initially Bi atoms selectively replace Si-dimers and Si-adatoms with Bi-dimers and Bi-adatoms, respectively. With extended Bi adsorption, Bi-dimers adsorb on the pre-adsorbed Bi-dimers and Bi-atoms. These dimers in the second layer form Bi-dimer pairs having relatively stable $p^3$ bonding, Finally, the Bi-dimer adsorbs on the Bi-dimers in the second layer and saturates. It can be deduced that both surface transformation to (3 3 7) and site-selective Bi adsorption are possible due to substrate-strain relaxation through inserting Bi atoms into subsurface of Si substrate.