• 제목/요약/키워드: 밀도 함수

검색결과 1,379건 처리시간 0.035초

전자 에너지 분포 함수 측정을 위한 I V특성 곡선의 확률 밀도 함수를 이용한 Smoothing method (The study of advanced numerical differentiation for obtaining the electron energy distribution function)

  • 장성호;정진욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2082-2084
    • /
    • 2005
  • I-V 특성 곡선의 2차 미분을 통해서 얻어지는 전자 에너지 분포 함수를 정확하게 구하기 위해서는 스무딩 과정이 반드시 필요하다. 대표적인 스무딩 방법으로 가우시안 확률 밀도 함수를 instrument함수로 이용하는 가우시안 스무딩이 있다. 본 연구에서는 시스템에 따라서 instrument함수가 다르다는 점에 착안하여, 여러 가지 다른 종류의 확률 밀도 함수를 instrument함수로 사용 스무딩에 적용하여 확률 밀도 함수에 따른 노이즈 제거 및 전자 에너지 분포 함수의 정확도를 비교하였고. 동시에 대표적인 범용 스무딩 방법인 사비츠키-골래이 스무딩, Polynomial fitting과도 그 결과를 비교 분석하였다.

  • PDF

하천에서 유사의 침전 위치에 대한 확률밀도함수 분석 (Analysis of Probability Density Function of Deposition Spot in Open Channel Flow)

  • 오정선;최성욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.50-50
    • /
    • 2016
  • 하천에서 유사 및 오염물질의 이동을 예측하기 위하여 초점을 두는 것에는 두 가지 요소가 있다. 입자의 농도로 나타낼 수 있는 양의 개념과 입자의 위치로 나타낼 수 있는 공간의 개념이 그것이다. 유사 입자와 같이 그 비중이 물보다 큰 경우, 흐름 내에서 침전과 부상의 메커니즘을 반복하게 되는데 최종적으로 바닥에 침적하는 위치는 하상변동, 서식처 등 하천관리의 다양한 측면에서 매우 중요하다. 유사 입자가 바닥에 침적하는 위치를 예측하는 데에는 난류와 지형 같은 많은 불확실한 요소가 내포되어 있어, 같은 크기의 유사 입자라 하여도 하나의 exact point로 도달하지 않는다. 이러한 불확실한 요소를 고려하여 침전 위치를 산정하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 침전 위치를 확률밀도함수로 나타내어 분석하고자 한다. 입자의 침전 위치를 확률밀도함수로 나타내기 위하여 입자 기반의 추적 모형을 사용하여 위치 데이터를 얻었으며, 이를 실험데이터와 비교하여 검증 후 확률밀도함수로 나타내었다. 그 결과 입자의 침적 위치에 대한 확률밀도함수는 로그정규분포를 띠고 있음을 확인하였으며, 확률밀도함수를 나타내는 매개변수를 물리 기반 회귀모형식으로 일반화 하여 나타낼 수 있었다.

  • PDF

프라이버시를 보존하는 군집화 (Privacy Preserving Clustering)

  • 유현진;김민호;라마크리쉬나
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.473-476
    • /
    • 2004
  • 본 논문에서는 프라이버시를 침해 하지 않는 데이터 마이닝에 대해 다룬다. 방대한 데이터에서 유용한 정보를 추출하는 데이터 마이닝분야에서 데이터로부터 프라이버시 보존의 중요성이 부각되고 있다. 그래서 프라이버시의 침해를 막기 위한 방법으로 실제 데이터를 사용하지 않고 잡음이 들어간 데이터를 사용한다. 그리고 프라이버시를 침해하지 않기 위해 잡음이 들어간 데이터로부터 데이터의 확률 밀도 함수(PDF)만을 복원한다. 이렇게 복원된 확률 밀도 함수만을 이용하여 데이터 마이닝기술, 예를 들면 분류화에 곧바로 적용함으로써 프라이버시를 보존하는 것이다. 하지만 분류화에 사용되는 데이터의 1차원적인 확률 밀도 함수만 가지고는 군집화에 사용하기가 부적절하다. 따라서 본 논문에서는 군집화를 하기 위해 잡음이 들어간 데이터로부터 결합 확률 밀도 함수(Joint PDF)를 복원하고, 복원된 결합 확률 밀도 함수만 가지고 군집화를 할 수 있는 방법을 다룬다.

  • PDF

확률밀도함수의 미분에 대한 커널추정법에 관한 연구

  • 석경하;김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권2호
    • /
    • pp.211-217
    • /
    • 1996
  • 본 논문은 확률밀도함수의 l 번째 도함수의 커널추정법에 관하여 다루고 있다. 확률밀도함수 도함수의 커널추정에 사용될 수 있는 두가지 평활량의 선택법, 교차타당성방법과 삽입방법에 의한 평활량의 점근분포를 규명하고 이들의 상대적 수렴속도를 각각 밝히고 삽입방법의 우수성을 소표본 모의실험을 통하여 확인하였다.

  • PDF

엔트로피 최대화를 이용한 새로운 밀도추정자의 설계 (Design of New Density Estimator with Entropy Maximization)

  • 김웅명;이현수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.796-798
    • /
    • 2005
  • 본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.

  • PDF

변형된 혼합 밀도 네트워크를 이용한 비선형 근사 (Nonlinear Approximations Using Modified Mixture Density Networks)

  • 조원희;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.543-546
    • /
    • 2004
  • Bishop과 Nabney에 의해 소개된 기존의 혼합 밀도 네트워크(Mixture Density Network)에서는 조건부 확률밀도 함수의 매개변수들(parameters)이 하나의 MLP(multi-layer perceptron)의 출력 벡터로 주어진다. 최근에는 변형된 혼합 밀도 네트워크(Modified Mixture Density Network)라고 하는 이름으로 조건부 확률밀도 함수의 선분포(priors), 조건부 평균(conditional means), 그리고 공분산(covariances) 등이 각각 독립적인 MLP의 출력벡터로 주어지는 경우를 다룬 연구가 보고된 바 있다. 본 논문에서는 조건부 평균이 입력에 관해 선형인 경우를 위한 버전에 대한 이론과 매트랩 프로그램 개발 및 적용을 다룬다. 본 논문에서는 우선 일반적인 혼합 밀도 네트워크에 대해 간단히 설명하고, 혼합 밀도 네트워크의 출력인 다층 퍼셉트론의 매개변수를 각각 다른 다층 퍼셉트론에서 학습시키는 변형된 혼합 밀도 네트워크를 설명한 후, 각각 다른 다층 퍼셉트론을 통해 매개변수를 얻는 것은 동일하나 평균값은 선형함수를 통해 얻는 혼합 밀도 네트워크 버전을 소개한다. 그리고, 모의실험을 통하여 이러한 혼합 밀도 네트워크를의 적용가능성에 대해 알아본다.

  • PDF

전산 시늉에 의한 위그너 함수와 밀도 행렬이 기술 (The description of wigner function and density matrix by computer tomograph)

  • 강장원;조기현;윤선현
    • 한국광학회지
    • /
    • 제11권6호
    • /
    • pp.441-446
    • /
    • 2000
  • Balanced Homodyne Detection 방법으로 국소 진동자의 위상을 조절해 주면서, 각 위상에 대하여 광전류를 측정하여 전류세기의 분포함수를 구하여 이 값을 라돈 역변환을 포함한 Filtered Back Projection하여 빛의 양자역학적 상태를 규정하는 위그너 함수를 구하고 이로부터 간접적으로 밀도행렬을 구한다. 또 위상에 관계없이 구해진 분포함수에서 Pattern함수를 이용하여 밀도행렬을 구할 수 있다. 본 연구에서는 위의 모든 과정을 전산시늉을 통하여 여러 양자역학적 상태 입력 광에 대하여 예측되는 위그너 함수와 밀도 행렬을 구하였다.

  • PDF

응축상 물 분자의 OH 수축 진동수 계산을 위한 전자밀도 범함수 비교 (Assessing Density Functional Theories to Compute the OH Stretching Frequencies of Water Molecules in Condensed Phases)

  • 전기영;양민오
    • 대한화학회지
    • /
    • 제67권1호
    • /
    • pp.13-18
    • /
    • 2023
  • 응축상에 존재하는 물 분자들의 OH 국소 수축 진동에 관한 0-1과 1-2 전이 에너지 계산을 위한 전자 밀도 범함수들을 평가하였다. 열세 개의 범함수와 아홉 개의 기저 함수 집합을 조사하여, 순이론적 coupled cluster 이론 CCSD(T)가 예측하는 진동수와 상관성이 매우 높게 예측되는 밀도 범함수와 활용된 기저 함수 집합은 Head-Gordon 연구진의 혼성 범함수인 ωB97X(D)/6-31+G* 계산법임을 확인하였다.

웨이블릿 영역에서 혼합 모델을 사용한 영상 잡음 제거 (Mixture Distributions for Image Denoising in Wavelet Domain)

  • 배병석;장문기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.89-90
    • /
    • 2008
  • AWGN(Addictive white gaussian noise)에 의해 영상은 자주 훼손되곤 한다. 최근 이를 복원하기위해 웨이블릿(Wavelet) 영역에서의 베이시안(Bayesian) 추정법이 연구되고 있다. 웨이블릿 변환된 영상 신호의 밀도 함수(pdf)는 표족한 첨두와 긴 꼬리(long-tail)를 갖는 경망이 있다. 이러한 사전 밀도 함수(a priori probability density function)를 상황에 적합하게 추정한다면 좋은 성능의 복원 결과를 얻을 수 있다. 빈번이 제안되는 릴도 함수로 가우시안(Gaussian) 분포 참수와 라플라스(Laplace) 분포 함수가 있다. 이들 각각의 모델은 훌륭히 변환 계수들을 모델링하며 나름대로의 장점을 나타낸다. 본 연구에서는 가우시안 분포와 라플라스(Laplace) 분포의 혼합 분포 모델을 밀도 함수로 제안하여, 이 들의 장점을 종합하였다. 이를 MAP(Maximum a Posteriori) 추정 방법에 적용하여 잡음을 제거 하였다. 그 결과 기존의 알고리즘에 비해 시각적인 면(Visual aspect), 수치적인 면(PSNR), 그리고 연산량(Complexity) 측면에서 망상된 결과를 얻었다.

  • PDF

독립성분분석에서 Convolution-FFT을 이용한 효율적인 점수함수의 생성 알고리즘 (An Algorithm of Score Function Generation using Convolution-FFT in Independent Component Analysis)

  • 김웅명;이현수
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.27-34
    • /
    • 2006
  • 본 연구에서는 엔트로피를 이용한 독립성분분석(ICA : Independent Component Analysis)에서 점수함수(score function)를 생성하는 알고리즘을 제안한다. 점수함수를 생성하기 위해서 원 신호(original signals)에 대한 확률밀도함수의 추정이 반드시 필요하고 밀도함수가 미분 가능해야 한다. 따라서 원 신호에 따른 적응적인 점수 함수를 유도할 수 있도록 커널 기반의 밀도추정(kernel density estimation)방법을 사용하였으며, 보다 빠른 밀도 추정 계산을 위해서 식의 형태를 컨볼루션(convolution) 변환 한 후, 컨볼루션을 빠르게 계산할 수 있는 FFT(Fast Fourier Transform) 알고리즘을 이용하였다. 제안한 점수함수 생성 방법은 원 신호에 확률밀도분포와 추정된 신호의 확률밀도 분포의 오차를 줄이는 역할을 한다 실험 결과, 암묵신호분리(blind source separation)문제에서 기존의 Extended Infomax 알고리즘과 Fixed Point ICA 보다 원 신호와 유사한 밀도함수를 추정하였고, 분리된 신호의 신호대잡음비등(SNR)에 있어서 향상된 성능을 얻을 수 있었다.