본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.
본 연구에서는 엔트로피를 이용한 독립성분분석(ICA : Independent Component Analysis)에서 점수함수(score function)를 생성하는 알고리즘을 제안한다. 점수함수를 생성하기 위해서 원 신호(original signals)에 대한 확률밀도함수의 추정이 반드시 필요하고 밀도함수가 미분 가능해야 한다. 따라서 원 신호에 따른 적응적인 점수 함수를 유도할 수 있도록 커널 기반의 밀도추정(kernel density estimation)방법을 사용하였으며, 보다 빠른 밀도 추정 계산을 위해서 식의 형태를 컨볼루션(convolution) 변환 한 후, 컨볼루션을 빠르게 계산할 수 있는 FFT(Fast Fourier Transform) 알고리즘을 이용하였다. 제안한 점수함수 생성 방법은 원 신호에 확률밀도분포와 추정된 신호의 확률밀도 분포의 오차를 줄이는 역할을 한다 실험 결과, 암묵신호분리(blind source separation)문제에서 기존의 Extended Infomax 알고리즘과 Fixed Point ICA 보다 원 신호와 유사한 밀도함수를 추정하였고, 분리된 신호의 신호대잡음비등(SNR)에 있어서 향상된 성능을 얻을 수 있었다.
레벨 셋 트리는 다차원에 정의된 확률 밀도 함수를 표현하는데 유용하다. 복잡한 데이터의 구조를 트리 형태로 시각화하여 데이터의 형태를 효율적으로 파악할 수 있으며 클러스터링 분석에 효과적으로 이용할 수 있다. 본 논문에서는 미지의 확률 밀도 함수에서 생성된 데이터 샘플로부터 레벨 셋 트리를 생성하는 알고리즘을 제안한다. 제안된 알고리즘은 레벨을 0에서부터 무한대로 증가시키며 밀도 함수의 각 레벨 셋을 추정하고, 이로부터 레벨 셋 트리를 생성한다. 이를 위해 본 논문에서는 one-class 서포트 벡터 머신 (OC-SVM)을 이용하여 직접적으로 레벨 셋을 추정한다. 이때 다양한 레벨 값에 대해 OC-SVM 학습을 반복해야 하는데, OC-SVM 솔루션 path 알고리즘을 통해 빠른 시간 안에 모든 레벨값에 해당하는 레벨 셋를 추정할 수 있다.
재료인수, 기하인수 또는 작용하중 등에 불확실성을 가지는 구조에 대한 추계론적 해석의 정확해는, 일반적인 관점에서, 불확실성을 표현하는 추계장의 수치생성과 이에 대한 몬테카를로 해석을 통하여 얻을 수 있다. 그러나 불확실 인수의 공간적 분포를 나타내는 추계장은 그 특성을 표현해주는 두 가지의 함수를 동시에 만족시켜야 한다. 하나는 확률변수의 공간적 분포 상황을 표현해주는 스펙트럼밀도함수이며, 다른 하나는 통계적 특성을 나타내는 확률밀도함수이다. 일반적으로 이들 두 함수를 동시에 만족시키는 추계장의 정확한 수치생성은 여러 이유에서 어려운 일로 여겨지고 있다. 그러나 상관관계거리가 무한대인 확률변수상태의 경우 추계장은 상수추계장이 되며, 이 경우 스펙트럼밀도함수에 의하여 부과되는 제한조건은 사라지게 되어, 단순히 확률밀도함수에 대한 조건만이 남게 된다. 이 경우, 구조인수의 불확실성에 의한 구조응답은 확률밀도함수만을 고려하여 얻을 수 있게 된다. 이렇게 산정되는 응답변화도는 기존의 급수전개 및 섭동법 등의 수치해법은 물론 몬테카를로 해석에서도 얻을 수 없었던 정확해에 대한 준이론해를 제공해 줄 수 있다.
본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.
본 논문에서는 고정되지 않은 배경의 동영상에서 객체를 추출하는 방법을 제안한다. 제안하는 알고리즘은 추적에 기반을 둔 기법으로 크게 세 단계의 과정으로 이루어져 있다. 첫 번째 단계는 초기 분할로서, 사용자의 반응을 이용하여 첫 프레임의 분할 결과를 획득하는 과정이다. 초기 분할을 통해 획득된 결과 샘플은 커널 밀도 추정을 이용하여 각 매크로 블록별 컬러 확률 밀도 함수를 생성하는데 사용된다. 두 번째 단계에서는 각 프레임에 대해 이전 프레임의 경계 정보와 움직임 벡터를 이용하여 일치성 띠를 생성하고, 생성된 띠에 대한 시공간 확률을 추정한다. 마지막 단계에서는 각 픽셀별 컬러, 시공간, 스무드항의 합으로 구성된 에너지 함수를 최소화하여 최종 결과를 획득한다. 실험 결과를 통해서 본 논문에서 제안하는 기법이 정확한 분할 결과를 추출하는 지 다양한 테스트 영상을 통해 확인한다.
이중 밀도 이산 웨이브렛 변환은 정밀하게 표본화되는 이산 웨이브렛 변환에 중요한 특징을 추가하여 그 성능을 개선한 것이다. 우선적으로 이 변환은 하나의 스케일링 함수와 두 개의 웨이브렛 함수로 구성된다. 즉, 3개 채널로 분해가 되며 두 웨이브렛 함수는 주파수 대역을 1/2씩 분할하도록 설계되었다. 따라서 입력 데이터보다 더 많은 양의 부대역 데이터들을 생성하면서도 완전재생을 만족한다. 또한 근사적으로 이동 불변의 특징을 만족하도록 설계되었다. 그러나 웨이브렛들이 모든 방향성을 반영하지 못하는 제약성을 갖는다. 즉, 이중 밀도 이산 웨이브렛 변환이 기존의 웨이브렛 변환보다 우수하지만, 다양한 방향성의 부족으로 그에 대한 처리가 제약받는다. 본 논문에서 제안된 방법은 이중 밀도 이산 웨이브렛 변환에 quincunx 표본화를 결합하여 각각의 장점을 얻도록 하였다. 특히, quincunx 표본화는 더 많은 방향성을 생성할 수 있다. 결과적으로 제안된 방법이 다양한 각도의 회전된 부영상을 생성할 수 있기 때문에 영상처리 영역에서 향상된 성능을 제공할 수 있다.
정규분포 등의 가정이 곤란한 복잡한 밀도 분포에 대해 데이터의 선험적인 지식 없이 해석하기 위해 다수의 항목이 되고 복잡한 밀도 분포를 가진 데이터를 보다 소수의 단순한 밀도 분포가 되는 그룹으로 분류하는 방법을 나타내었고 데이터를 그룹으로 분류하는데 표본에 의한 분류와 항목에 의한 분류를 할 수 있다. 선험지식을 사용하지 않고 데이터를 분류하면 Parzen의 창함수에 의한 추정과 대수우도에 의한 평가함수를 사용하는 것으로 복잡한 형상을 가진 밀도분포도 선험지식 없이 해석이 가능하다. 표본의 밀도 분포와 항목의 밀도분포를 나타내기 위하여 다수의 밀도 분포의 합과 곱의 형으로 전개하는 방법을 보였고 제안하는 방법을 의도적으로 생성한 데이터에 적용하여 원래의 밀도분포에 따라 분류결과를 얻을 수 있었다.
연속시간모형은 시간의 흐름에 대응되는 자본자산의 운동의 성질과 시간의 흐름에 따라 형성되는 자본자산의 가격을 동시적으로 파악할 수 있는 것이 큰 장점이다. 연속시간 확률미분방정식을 구성하는 표류함수와 확산함수가 폐형해나 해석적 형태로 존재하지 않는 경우가 대부분이다. 여기에서 모수추정의 어려움이 발생한다. 전이 확률밀도함수의 인지 또는 발견의 어려움과 표류함수와 확산함수의 적분 불가능성은 최대가능도법의 사용을 어렵게 만든다. 여기에서 모수방법 보다는 비모수방법을 통하여 연속 확률 미분방정식을 추정하려는 성향이 존재한다. 밀도를 모르면 표본적률을 사용하여 모수를 추정할 수 있으므로 일반화 적률법이 연속시간 확률미분방정식의 모수 추정과 검정에 사용되고 있다. 전이밀도의 값을 시뮬레이션을 통하여 얻는 마코브연쇄 몬테카를로 방법, 전이밀도를 무한소 생성작용소를 통하여 얻는 방법, 비 모수방법, 여러 종류의 전개에 의하여 얻은 표류함수와 확산함수의 전이밀도에 대한 최대가능도법 등 여러 종류의 연속시간 확률미분방정식의 실증분석에서 사용되고 있다. 이 논문에서는 연속시간 확률미분방정식의 실증분석 방법들을 정리하는데 목적이 있다. 이일균(2004)은 이 논문과의 자매논문으로 시뮬레이션에 의한 확률미분방정식의 추정을 다루고 있어 시뮬레이션방법은 그 논문에 미룬다.
폰트는 텍스트 정보를 기술하는 기본 요소로서 다양한 타입에 따른 독특한 감성정보를 내재하고 있다. 본 연구는 문서에 나타나 있는 영문폰트의 분포에 따른 감성정보 자동추출 시스템의 전처리 단계로서 문서상에서 특정의 폰트를 인식하는 모듈을 소개하고자 한다. 폰트 디자이너에 생성된 대부분의 폰트는 glyph data 라고 하는 2D boundary 좌표값에 의해 그 모양(Shape)이 결정된다. 이 데이터로부터 정의된 폰트밀도함수와 각 문자가 등장하는 보편적 확률 값의 linear combination으로부터 각 폰트를 식별할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.