• 제목/요약/키워드: 밀도 생성함수

검색결과 108건 처리시간 0.023초

엔트로피 최대화를 이용한 새로운 밀도추정자의 설계 (Design of New Density Estimator with Entropy Maximization)

  • 김웅명;이현수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.796-798
    • /
    • 2005
  • 본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.

  • PDF

독립성분분석에서 Convolution-FFT을 이용한 효율적인 점수함수의 생성 알고리즘 (An Algorithm of Score Function Generation using Convolution-FFT in Independent Component Analysis)

  • 김웅명;이현수
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.27-34
    • /
    • 2006
  • 본 연구에서는 엔트로피를 이용한 독립성분분석(ICA : Independent Component Analysis)에서 점수함수(score function)를 생성하는 알고리즘을 제안한다. 점수함수를 생성하기 위해서 원 신호(original signals)에 대한 확률밀도함수의 추정이 반드시 필요하고 밀도함수가 미분 가능해야 한다. 따라서 원 신호에 따른 적응적인 점수 함수를 유도할 수 있도록 커널 기반의 밀도추정(kernel density estimation)방법을 사용하였으며, 보다 빠른 밀도 추정 계산을 위해서 식의 형태를 컨볼루션(convolution) 변환 한 후, 컨볼루션을 빠르게 계산할 수 있는 FFT(Fast Fourier Transform) 알고리즘을 이용하였다. 제안한 점수함수 생성 방법은 원 신호에 확률밀도분포와 추정된 신호의 확률밀도 분포의 오차를 줄이는 역할을 한다 실험 결과, 암묵신호분리(blind source separation)문제에서 기존의 Extended Infomax 알고리즘과 Fixed Point ICA 보다 원 신호와 유사한 밀도함수를 추정하였고, 분리된 신호의 신호대잡음비등(SNR)에 있어서 향상된 성능을 얻을 수 있었다.

One-Class 서포트 벡터 머신을 이용한 레벨 셋 트리 생성 (Creating Level Set Trees Using One-Class Support Vector Machines)

  • 이계민
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.86-92
    • /
    • 2015
  • 레벨 셋 트리는 다차원에 정의된 확률 밀도 함수를 표현하는데 유용하다. 복잡한 데이터의 구조를 트리 형태로 시각화하여 데이터의 형태를 효율적으로 파악할 수 있으며 클러스터링 분석에 효과적으로 이용할 수 있다. 본 논문에서는 미지의 확률 밀도 함수에서 생성된 데이터 샘플로부터 레벨 셋 트리를 생성하는 알고리즘을 제안한다. 제안된 알고리즘은 레벨을 0에서부터 무한대로 증가시키며 밀도 함수의 각 레벨 셋을 추정하고, 이로부터 레벨 셋 트리를 생성한다. 이를 위해 본 논문에서는 one-class 서포트 벡터 머신 (OC-SVM)을 이용하여 직접적으로 레벨 셋을 추정한다. 이때 다양한 레벨 값에 대해 OC-SVM 학습을 반복해야 하는데, OC-SVM 솔루션 path 알고리즘을 통해 빠른 시간 안에 모든 레벨값에 해당하는 레벨 셋를 추정할 수 있다.

확률변수상태와 응답변화도 (Random Variable State and Response Variability)

  • 노혁천;이필승
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.1001-1011
    • /
    • 2006
  • 재료인수, 기하인수 또는 작용하중 등에 불확실성을 가지는 구조에 대한 추계론적 해석의 정확해는, 일반적인 관점에서, 불확실성을 표현하는 추계장의 수치생성과 이에 대한 몬테카를로 해석을 통하여 얻을 수 있다. 그러나 불확실 인수의 공간적 분포를 나타내는 추계장은 그 특성을 표현해주는 두 가지의 함수를 동시에 만족시켜야 한다. 하나는 확률변수의 공간적 분포 상황을 표현해주는 스펙트럼밀도함수이며, 다른 하나는 통계적 특성을 나타내는 확률밀도함수이다. 일반적으로 이들 두 함수를 동시에 만족시키는 추계장의 정확한 수치생성은 여러 이유에서 어려운 일로 여겨지고 있다. 그러나 상관관계거리가 무한대인 확률변수상태의 경우 추계장은 상수추계장이 되며, 이 경우 스펙트럼밀도함수에 의하여 부과되는 제한조건은 사라지게 되어, 단순히 확률밀도함수에 대한 조건만이 남게 된다. 이 경우, 구조인수의 불확실성에 의한 구조응답은 확률밀도함수만을 고려하여 얻을 수 있게 된다. 이렇게 산정되는 응답변화도는 기존의 급수전개 및 섭동법 등의 수치해법은 물론 몬테카를로 해석에서도 얻을 수 없었던 정확해에 대한 준이론해를 제공해 줄 수 있다.

개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용 (An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression)

  • 김승석;곽근창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.182-183
    • /
    • 2007
  • 본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.

  • PDF

커널 밀도 추정과 시공간 일치성을 이용한 동영상 객체 분할 (Video Object Segmentation using Kernel Density Estimation and Spatio-temporal Coherence)

  • 안재균;김창수
    • 전기전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문에서는 고정되지 않은 배경의 동영상에서 객체를 추출하는 방법을 제안한다. 제안하는 알고리즘은 추적에 기반을 둔 기법으로 크게 세 단계의 과정으로 이루어져 있다. 첫 번째 단계는 초기 분할로서, 사용자의 반응을 이용하여 첫 프레임의 분할 결과를 획득하는 과정이다. 초기 분할을 통해 획득된 결과 샘플은 커널 밀도 추정을 이용하여 각 매크로 블록별 컬러 확률 밀도 함수를 생성하는데 사용된다. 두 번째 단계에서는 각 프레임에 대해 이전 프레임의 경계 정보와 움직임 벡터를 이용하여 일치성 띠를 생성하고, 생성된 띠에 대한 시공간 확률을 추정한다. 마지막 단계에서는 각 픽셀별 컬러, 시공간, 스무드항의 합으로 구성된 에너지 함수를 최소화하여 최종 결과를 획득한다. 실험 결과를 통해서 본 논문에서 제안하는 기법이 정확한 분할 결과를 추출하는 지 다양한 테스트 영상을 통해 확인한다.

  • PDF

방향의 선택성 향상을 통한 이중 밀도 이산 웨이브렛 변환의 성능 개선 (Improvement of Double Density Discrete Wavelet Transformation with Enhancement of Directional Selectivity)

  • 임중희;신종홍;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.221-232
    • /
    • 2012
  • 이중 밀도 이산 웨이브렛 변환은 정밀하게 표본화되는 이산 웨이브렛 변환에 중요한 특징을 추가하여 그 성능을 개선한 것이다. 우선적으로 이 변환은 하나의 스케일링 함수와 두 개의 웨이브렛 함수로 구성된다. 즉, 3개 채널로 분해가 되며 두 웨이브렛 함수는 주파수 대역을 1/2씩 분할하도록 설계되었다. 따라서 입력 데이터보다 더 많은 양의 부대역 데이터들을 생성하면서도 완전재생을 만족한다. 또한 근사적으로 이동 불변의 특징을 만족하도록 설계되었다. 그러나 웨이브렛들이 모든 방향성을 반영하지 못하는 제약성을 갖는다. 즉, 이중 밀도 이산 웨이브렛 변환이 기존의 웨이브렛 변환보다 우수하지만, 다양한 방향성의 부족으로 그에 대한 처리가 제약받는다. 본 논문에서 제안된 방법은 이중 밀도 이산 웨이브렛 변환에 quincunx 표본화를 결합하여 각각의 장점을 얻도록 하였다. 특히, quincunx 표본화는 더 많은 방향성을 생성할 수 있다. 결과적으로 제안된 방법이 다양한 각도의 회전된 부영상을 생성할 수 있기 때문에 영상처리 영역에서 향상된 성능을 제공할 수 있다.

보건 데이터 활용에 관한 연구(II) (A study of the Health Data Application)

  • 임기영;조은희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (하)
    • /
    • pp.1213-1216
    • /
    • 2001
  • 정규분포 등의 가정이 곤란한 복잡한 밀도 분포에 대해 데이터의 선험적인 지식 없이 해석하기 위해 다수의 항목이 되고 복잡한 밀도 분포를 가진 데이터를 보다 소수의 단순한 밀도 분포가 되는 그룹으로 분류하는 방법을 나타내었고 데이터를 그룹으로 분류하는데 표본에 의한 분류와 항목에 의한 분류를 할 수 있다. 선험지식을 사용하지 않고 데이터를 분류하면 Parzen의 창함수에 의한 추정과 대수우도에 의한 평가함수를 사용하는 것으로 복잡한 형상을 가진 밀도분포도 선험지식 없이 해석이 가능하다. 표본의 밀도 분포와 항목의 밀도분포를 나타내기 위하여 다수의 밀도 분포의 합과 곱의 형으로 전개하는 방법을 보였고 제안하는 방법을 의도적으로 생성한 데이터에 적용하여 원래의 밀도분포에 따라 분류결과를 얻을 수 있었다.

  • PDF

자본자산가격의 운동법칙을 표상하는 연속시간 확률매분방정식의 추정방법 - 비시뮬레이션 방법 -

  • 이일균
    • 재무관리논총
    • /
    • 제10권1호
    • /
    • pp.1-44
    • /
    • 2004
  • 연속시간모형은 시간의 흐름에 대응되는 자본자산의 운동의 성질과 시간의 흐름에 따라 형성되는 자본자산의 가격을 동시적으로 파악할 수 있는 것이 큰 장점이다. 연속시간 확률미분방정식을 구성하는 표류함수와 확산함수가 폐형해나 해석적 형태로 존재하지 않는 경우가 대부분이다. 여기에서 모수추정의 어려움이 발생한다. 전이 확률밀도함수의 인지 또는 발견의 어려움과 표류함수와 확산함수의 적분 불가능성은 최대가능도법의 사용을 어렵게 만든다. 여기에서 모수방법 보다는 비모수방법을 통하여 연속 확률 미분방정식을 추정하려는 성향이 존재한다. 밀도를 모르면 표본적률을 사용하여 모수를 추정할 수 있으므로 일반화 적률법이 연속시간 확률미분방정식의 모수 추정과 검정에 사용되고 있다. 전이밀도의 값을 시뮬레이션을 통하여 얻는 마코브연쇄 몬테카를로 방법, 전이밀도를 무한소 생성작용소를 통하여 얻는 방법, 비 모수방법, 여러 종류의 전개에 의하여 얻은 표류함수와 확산함수의 전이밀도에 대한 최대가능도법 등 여러 종류의 연속시간 확률미분방정식의 실증분석에서 사용되고 있다. 이 논문에서는 연속시간 확률미분방정식의 실증분석 방법들을 정리하는데 목적이 있다. 이일균(2004)은 이 논문과의 자매논문으로 시뮬레이션에 의한 확률미분방정식의 추정을 다루고 있어 시뮬레이션방법은 그 논문에 미룬다.

  • PDF

폰트 밀도함수를 애용한 폰트 타입의 인식 (Fontface Recognition Using the Font Density Function)

  • 진성아;주문원
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.189-191
    • /
    • 2001
  • 폰트는 텍스트 정보를 기술하는 기본 요소로서 다양한 타입에 따른 독특한 감성정보를 내재하고 있다. 본 연구는 문서에 나타나 있는 영문폰트의 분포에 따른 감성정보 자동추출 시스템의 전처리 단계로서 문서상에서 특정의 폰트를 인식하는 모듈을 소개하고자 한다. 폰트 디자이너에 생성된 대부분의 폰트는 glyph data 라고 하는 2D boundary 좌표값에 의해 그 모양(Shape)이 결정된다. 이 데이터로부터 정의된 폰트밀도함수와 각 문자가 등장하는 보편적 확률 값의 linear combination으로부터 각 폰트를 식별할 수 있다.

  • PDF