• Title/Summary/Keyword: 밀도확률

Search Result 674, Processing Time 0.028 seconds

Improvement of Keyword Spotting Performance Using Normalized Confidence Measure (정규화 신뢰도를 이용한 핵심어 검출 성능향상)

  • Kim, Cheol;Lee, Kyoung-Rok;Kim, Jin-Young;Choi, Seung-Ho;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.380-386
    • /
    • 2002
  • Conventional post-processing as like confidence measure (CM) proposed by Rahim calculates phones' CM using the likelihood between phoneme model and anti-model, and then word's CM is obtained by averaging phone-level CMs[1]. In conventional method, CMs of some specific keywords are tory low and they are usually rejected. The reason is that statistics of phone-level CMs are not consistent. In other words, phone-level CMs have different probability density functions (pdf) for each phone, especially sri-phone. To overcome this problem, in this paper, we propose normalized confidence measure. Our approach is to transform CM pdf of each tri-phone to the same pdf under the assumption that CM pdfs are Gaussian. For evaluating our method we use common keyword spotting system. In that system context-dependent HMM models are used for modeling keyword utterance and contort-independent HMM models are applied to non-keyword utterance. The experiment results show that the proposed NCM reduced FAR (false alarm rate) from 0.44 to 0.33 FA/KW/HR (false alarm/keyword/hour) when MDR is about 8%. It achieves 25% improvement of FAR.

Optimization of Stream Gauge Network Using the Entropy Theory (엔트로피 이론을 이용한 수위관측망의 최적화)

  • Yoo, Chul-Sang;Kim, In-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.161-172
    • /
    • 2003
  • This study has evaluated the stream gauge network with the main emphasis on if the current stream gauge network can catch the runoff characteristics of the basin. As the evaluation of the stream gauge network in this study does not consider a special purpose of a stream gauge, nor the effect from a hydraulic structure, it becomes an optimization of current stream gauge network under the condition that each stream gauge measures the natural runoff volume. This study has been applied to the Nam-Han River Basin for the optimization of total 31 stream gauge stations using the entropy concept. Summarizing the results are as follows. (1) The unit hydrograph representing the basin response from rainfall can be transferred into a probability density function for the application of the entropy concept to optimize the stream gauge network. (2) Accurate derivation of unit hydrographs representing stream gauge sites was found the most important part for the evaluation of stream gauge network, which was assured in this research by comparing the measured and derived unit hydrographs. (3) The Nam-Han River Basin was found to need at least 28 stream gauge stations, which was derived by considering both the shape of the unit hydrograph and the runoff volume. If considering only the shape of the unit hydrograph, the number of stream gauges required decreases to 23.

A Study of the Failure Distribution and the Failure Difference by the Stress on the K-1 Tracked Vehicle (K-1전차의 고장분포와 부하에 따른 고장률 차이에 대한 연구)

  • Lee, Sang-Jin;Choi, Seok-Yoon
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.33-49
    • /
    • 2009
  • The objective of this study is as follows. First, the hazard function on the failure probability density function of the K-1 tracked vehicles can be occurred in the form of the bathtub curve. Second, the failure mode may be different under two different operational situations. The research result shows that the bathtub curve can be fitted in the Weibull distribution, that assumes different shapes according to the specific stage of the system's life cycle. The K-1 tracked vehicle has a relatively high hazard(failure) rate at the time of its first service. The failure rate starts decreasing for a time immediately after it goes into service. After the break-in period, the surviving components have a fairly constant hazard rate. As the K-1 system ages, deterioration of its various parts takes place and the hazard rate starts Increasing. Second, the result shows the failure rate in the harsh operational environment is higher than that in the mild operational environment. In conclusion, the bathtub curve can be logically appropriate in establishing the depot overhaul cycle. Moreover, it is necessary for determining the right time of the depot overhaul to consider not only the age of defense equipment but also the different operational environment.

Effects of Sterilization and Cultivation Temperatures of Oak Sawdust Medium on Lentinula edodes Hyphal Growth (참나무 톱밥배지의 살균 및 배양온도가 표고 균사생장에 미치는 영향)

  • Koo, Chang-Duck;Lee, Hwa-Yong;Lee, Gwi-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.77-82
    • /
    • 2012
  • Sterilization of oak sawdust at $65^{\circ}C$ for Lentinula edodes bed cultivation can be efficient in sterilization facility cost, but its effect on the mushroom production is uncertain due to high contamination probability. The effective conditions for L. edodes hyphal growth in the low temperature sterilized oak sawdust were investigated with combinations of three sterilization temperatures ($65^{\circ}C$, $100^{\circ}C$ and $121^{\circ}C$) and four cultivation temperatures ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$). L. edodes inoculation density effect was also tested with 1 cm, 2 cm, and 4 cm distance in the sawdust (4%, 11% and 25% inoculation rate by surface area). L. edodes hyphal growth in the sawdust sterilized at $65^{\circ}C$ was as much as at those $100^{\circ}C$ and $121^{\circ}C$ when the fungus cultured below $25^{\circ}C$, but it was greatly reduced when cultured at $30^{\circ}C$. And the sawdust medium with 1cm distance inoculation density was fully occupied with L. edodes hyphae, but those with 2~4cm distance inoculation were contaminated by 4~33%. Therefore, we conclude that low temperature sterilized oak sawdust needs to be cultured under $25^{\circ}C$ after sufficient inoculation by 25% for successful bed cultivation of L. edodes.

Analysis of runoff aggregation structure and energy expenditure pattern for Choyang creek basin on the basis of power law distribution (멱함수 법칙분포를 기반으로 한 조양하 유역의 유출응집구조와 에너지소비 양상에 대한 해석)

  • Kim, Joo-Cheol;Cui, Feng Xue;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.725-734
    • /
    • 2017
  • The main purpose of this study is to analyze runoff aggregation structure and energy expenditure pattern of Choyang creek basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest, which define tractive force and stream power as well as drainage area, are extracted based on GIS, and their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution. The results indicate that three distinct behavioral regimes are observed from the complementary cumulative distributions of three geomorphogic factors. Based on the parameter estimation of power law distribution by maximum likelihood drainage area and stream power can be judged as scale invariance factor without finite scale while tractive force as scale dependence factor with finite scale. Furthermore, it is judged that tractive force would not follow power law distribution because it shows limited complex system behaviors only within the small extent of scale. The exponent of power law distribution for drainage area obtained in this study by maximum likelihood is larger than the previous researches due to the difference of parameter estimation methodologies. And the exponent for stream power is smaller than the previous researches due to the scaling property of channel slope for the basin of interest.

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis- (다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1987
  • To analyze the aerosol dynamics in severe accidents of LMFBR, a new computer code entitled MCAD (Multicomponent Aerosol Dynamics) has been developed. The code can treat two component aerosol system using relative collision probability of each particles as sequences of accident scenarios. Coagulation and removal mechanisms incorporating Brownian diffusion and gravitational sedimentation are included in this model. In order to see the effect of particle geometry, the code makes use of the concept of density correction factor and shape factors. The code is verified using the experimental result of NSPP-300 series and compared to other code. At present, it fits the result of experiment well and agrees to the existing code. The input variables included are very uncertain. Hence, it requires uncertainty and sensitivity analysis as a supplement to code development. In this analysis, 14 variables are selected to analyze. The input variables are compounded by experimental design method and Latin hypercube sampling. Their results are applied to Response surface method to see the degree of regression. The stepwise regression method gives an insight to which variables are significant as time elapse and their reasonable ranges. Using Monte Carlo Method to the regression model of LHS, the confidence level of the results of MCAD and their variables is improved.

  • PDF

Analysis of Correlation between Marine Traffic Congestion and Waterway Risk based on IWRAP Mk2 (해상교통혼잡도와 IWRAP Mk2 기반의 항로 위험도 연관성 분석에 관한 연구)

  • Lee, Euijong;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Several types of mathematical analysis methods are used for port waterway risk assessment based on marine traffic volume. In Korea, a marine traffic congestion model that standardizes the size of the vessels passing through the port waterway is applied to evaluate the risk of the waterway. For example, when marine traffic congestion is high, risk situations such as collisions are likely to occur. However, a scientific review is required to determine if there is a correlation between high density of maritime traffic and a high risk of waterway incidents. In this study, IWRAP Mk2(IALA official recommendation evaluation model) and a marine traffic congestion model were used to analyze the correlation between port waterway risk and marine traffic congestion in the same area. As a result, the linear function of R2 was calculated as 0.943 and it was determined to be significant. The Pearson correlation coefficient was calculated as 0.971, indicating a strong positive correlation. It was confirmed that the port waterway risk and the marine traffic congestion have a strong correlation due to the influence of the common input variables of each model. It is expected that these results will be used in the development of advanced models for the prediction of port waterway risk assessment.

Human Exposure to BTEX and Its Risk Assessment Using the CalTOX Model According to the Probability Density Function in Meteorological Input Data (기상변수들의 확률밀도함수(PDF)에 따른 CalTOX모델을 이용한 BTEX 인체노출량 및 인체위해성 평가 연구)

  • Kim, Ok;Song, Youngho;Choi, Jinha;Park, Sanghyun;Park, Changyoung;Lee, Minwoo;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.497-510
    • /
    • 2019
  • Objectives: The aim of this study was to secure the reliability of using the CalTOX model when evaluating LADD (or ADD) and Risk (or HQ) among local residents for the emission of BTEX (Benzene, Toluene, Ethylbenzene, Xylene) and by closely examining the difference in the confidence interval of the assessment outcomes according to the difference in the probability density function of input variables. Methods: The assessment was made by dividing it according to the method ($I^{\dagger}$) of inputting the probability density function in meteorological variables of the model with log-normal distribution and the method of inputting ($II^{\ddagger}$) after grasping the optimal probability density function using @Risk. A T-test was carried out in order to analyze the difference in confidence interval of the two assessment results. Results: It was evaluated to be 1.46E-03 mg/kg-d in LADD of Benzene, 1.96E-04 mg/kg-d in ADD of Toluene, 8.15E-05 mg/kg-d in ADD of Ethylbenzene, and 2.30E-04 mg/kg-d in ADD of Xylene. As for the predicted confidence interval in LADD and ADD, there was a significant difference between the $I^{\dagger}$ and $II^{\ddagger}$ methods in $LADD_{Inhalation}$ for Benzene, and in $ADD_{Inhalation}$ and ADD for Toluene and Xylene. It appeared to be 3.58E-05 for risk in Benzene, 3.78E-03 for HQ in Toluene, 1.48E-03 for HQ in Ethylbenzene, and 3.77E-03 for HQ in Xylene. As a result of the HQ in Toluene and Xylene, the difference in confidence interval between the $I^{\dagger}$ and $II^{\ddagger}$ methods was shown to be significant. Conclusions: The human risk assessment for BTEX was made by dividing it into the method ($I^{\dagger}$) of inputting the probability density function of meteorological variables for the CalTOX model with log-normal distribution, and the method of inputting ($II^{\ddagger}$) after grasping the optimal probability density function using @Risk. As a result, it was identified that Risk (or HQ) is the same, but that there is a significant difference in the confidence interval of Risk (or HQ) between the $I^{\dagger}$ and $II^{\ddagger}$ methods.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.