• Title/Summary/Keyword: 미연 탄화수소 배출물

Search Result 5, Processing Time 0.02 seconds

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine (선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

Low NOx Combustors in a Industrial Gas Turbine (산업용 가스터빈의 저NOx 연소기)

  • 신동신
    • Journal of the KSME
    • /
    • v.34 no.12
    • /
    • pp.929-939
    • /
    • 1994
  • 최근 환경문제와 관련하여 정제된 석유 연료가 아닌 천연가스와 같은 연료의 사용이 증가하면서 산업용 가스터빈의 연소기술에 대한 관심이 집중되고 있다. 가스터빈 연소로 생성되는, 환경을 위협하는 오염물은 연기, 수증기, 일산화탄소(CO), 미연 탄화수소, $NO_{x}$, $SO_{x}$ 등이 있다. 수증기 및 일산화탄소는 지구 온실화에 영향을 미치고 있으나 그다지 심각한 정도는 아 니며, $SO_{x}$는 독성이 있으나 연료 정제시 제거되어질 수 있다. $NO_{x}$는 지구의 오 존층을 파괴하여 생태계를 위협하기 때문에 오염 배출물중 가장 심각하게 고려되어지고 있다. 미국에서는 법으로 산업용 가스터빈의 $NO_{x}$의 양을 규제하고 있는데 15% 산소배출농도에 대하여 1984년에 75ppm에서 1993년에 30ppm으로 낮추어 규제하고 있다. 일본도 미국과 비슷한 수준으로 규제하고 있으며, 따라서 최근의 가스터빈 연소기술은 저 $NO_{x}$연소기에 대한 것으로 저$NO_{x}$연소에 관한 개론 및 가스터빈 연소기의 저$NO_{x}$화 방법, 그리고 미 국과 일본의 최근의 저$NO_{x}$연소기 개발동향에 대하여 다루고자 한다.

  • PDF

Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol (직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성)

  • Yoon, Seung Hyun;Park, Su Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.609-615
    • /
    • 2015
  • In this study, the combustion and exhaust emission characteristics in a gasoline direct injection engine with variations of the bio-ethanol-gasoline blending ratio and the excess air factor were investigated. To investigate the effects of the excess air factor and the bio-ethanol blends with gasoline, combustion characteristics such as the in-cylinder combustion pressure, rate of heat release (ROHR), and the fuel consumption rate were analyzed. The reduction of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and nitrogen oxides ($NO_x$) were compared with those of gasoline fuel with various excess air factors. The results showed that the peak combustion pressure and ROHR of bio-ethanol blends were slightly higher and were increased as bio-ethanol blending ratio is increased. Brake specific fuel consumption increased for a higher bio-ethanol blending ratio. The exhaust emissions decreased as the bio-ethanol blending ratio increased under all experimental conditions. The exhaust emissions of bio-ethanol fuels were lower than those of gasoline.

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.