• Title/Summary/Keyword: 미연 탄화수소

Search Result 36, Processing Time 0.022 seconds

A Study on Direct Injection Stratified Charge Combustion with Spark Ignition in Constant Volume Bomb (정적 용기내의 직접분사식 스파크 점화 성층 연소에 관한 연구)

  • Hong, M.S.;Kim, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.30-40
    • /
    • 1994
  • The direct-injection stratified-charge engine has the advantages of higher thermal efficiency and less CO and $NO_x$ emission levels than conventional spark ignition engines. However, its actual utilization is prevented by high unburned hydrocarbon emission levels during light-load operations. In this paper, fundamental studies were carried out using a pancake type constant volume bomb. The effects of intensification of local premixing by tangential and radial fuel injection were examined experimentally. Unburned hydrocarbon emission levels with radial fuel injection were shown to be lower than those of tangential fuel injection cases. The stratification and mixing process of fuel jet and combustion process were observed by schlieren photography.

  • PDF

Spray Characteristics of the Air-Shrouded Injectors (공기쉬라우드형 인젝터의 분무 특성 연구)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.912-919
    • /
    • 2001
  • Improvement of the atomization characteristics by adopting the air-shrouded injector has been considered as one of the important methods for decreasing HC emissions in SI engines. Thus, in this study to develop air-shrouded injector with a finer spray, atomization characteristics of differ-ent types of commercial air-shrouded injectors were investigated through the spray imaging and the drop size measurements. As a results, it was found that the internal mixing type of air-shroud-ed injector had a good atomization characteristics. But, a number of large droplets were found in the internal mixing type commercial injector, this shortcoming was improved by adopting the thread type air passages in the air nozzle.

  • PDF

A Study on Lean Combustion Characteristics with Hydrogen Addition in a Heavy Duty Natural Gas Engine (대형 천연가스엔진에서의 수소 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Won, Sang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. However, the possibility of partial burn and misfire makes the benefits of natural gas fueled engine worse under lean burn operation condition, Hydrogen addition can promote the combustion characteristics while reduces emissions extremely. In this study, the effect of hydrogen addition on an engine performance was investigated. The results showed that thermal efficiency was increased due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the small increase in HC or CO emissions.

Air Fuel Ratio Determination Method for Alternative Fuel Based on Carbon Balance and Linear Equation (탄소 균형과 1차식에 의한 대체 연료의 공연비 산정법)

  • Lee, Jae-Won;Kwon, Soon-Tae;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.182-188
    • /
    • 2008
  • This paper is to compare the carbon-balanced and liner air-fuel ratio determination methods for alternative fuels. In the previous work, expansion of Eltinge chart, unburned hydrocarbon compensation, comparison of the results from various methods were discussed. It has been also concluded that Eltinge method might be regarded as the most general equation of AFR determination among the existing ones. In the recent years, however, increasing demand for the environmental preservation, including global warming-up protection, and energy conservation lead to introduce the alternative fuel to the internal combustion engine. Therefore, the exact calculations of AFR for these fuels are needed. Especially, for the fuel that contains oxygen, all AFR calculation equations except Eltinge have to be re-formulated. In this paper, the AFR for alternative fuel were calculated by re-formulated carbon balance, accuracy of which was already confirmed, and linear equations, which are newly proposed by statistical method for each fuel. The results show that AFRs based on carbon balance have a little more error compared with gasoline, however, the accuracy is enough for this formula to apply to various fuel. The proposed linear equation also have excellent accuracy below $\lambda=1.2$.

Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique (레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화)

  • Cho, Hoon;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends (바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구)

  • KIM, JONG-HO;PARK, KYEONG-HOON;KIM, GYEONG-MIN;PARK, KYEONG-WON;JEONG, TAE-YONG;LEE, YOUNG-JOO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct (이송 배관 내 분진폭발의 화염전파특성)

  • Han, OuSup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.572-579
    • /
    • 2009
  • This study is to investigate experimentally the flame structure and propagation mechanism in dust explosions and to provide the fundamental knowledge. Upward propagating laminar dust flames in a vertical duct of 1.8 m height and 0.15 m square cross-section are observed and flame front is visualized using by a high-speed video camera. Also, the thicknesses of preheated and reaction zone have been determined by a schlieren, electrostatic probe and thermocouple. The thickness of preheated zone in lycopodium dust flame is observed to be 4~13 mm, about several orders of magnitude higher than that of premixed gaseous flames. From the experimental results by a PIV(Particle Image Velocimetry) system, a certain residence time of the unburned particle in preheated zone is needed to generate combustible gas from the particle. The residence time will depend on preheated zone thickness, particle velocity and flame propagation velocity.

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.