• Title/Summary/Keyword: 미세 채널

Search Result 243, Processing Time 0.048 seconds

3D sensing and segmentation of microorganism using microfluidic device and digital holography (미세유체소자와 디지털 홀로그래피 기술을 이용한 미생물의 3D 이미징과 세그먼테이션)

  • Shin, Donghak;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.447-452
    • /
    • 2013
  • Microfluidic devices can offer precise control for a verity of tasks involving biological specimen. In this paper, we propose an integrated system consisting of a microfluidic device along with a digital holographic microscope and present three-dimensional (3D) sensing and segmentation of biological microorganisms. When the individual microorganisms are inputted into the microfluidic channel, the holographic microscope records their holograms. The holograms are computationally reconstructed in 3D using Fresnel transform and the reconstructed phase images are used to search the position of microorganisms. Optical experiments are carried out and experimental results are presented to illustrate the usefulness of the proposed system.

A thermopneumatic-actuated polydimethylsiloxane microfluidic system integrated with micropump and microvalve on the same structure (동일 구조의 마이크로 펌프와 밸브가 직접된 열공압 방식의 PDMS 미세 유체 시스템)

  • Moon, Min-Chul;Yoo, Jong-Chul;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.116-118
    • /
    • 2005
  • 열공압 방식으로 동작하는 마이크로 펌프와 밸브가 집적된 (polydimethylsiloxane)PDMS 미 세 유체 시스템을 제작하였다. 본 실험에서 제안한 미세 유체 시스템은 PDMS 마이크로 채널, PDMS membrane, 열공압 챔버, indium tin oxide(ITO) 히터로 구성되어 있다. 마이크로 펌프의 경우 가해주는 펄스 전압의 변화를 통해 유속을 최적화 하였고 마이크로 밸브의 경우 가해주는 직류 전압을 변화시켜 유체의 흐름을 제어할 수 있었다. 미세 유체 시스템의 최적화된 조건은 마이크로 펌프의 경우 duty 4%와 주파수 4Hz에서 최대 pumping rate을 나타냈고 그때의 pumping rate 68nl/min이었다. 마이크로 밸브의 유체를 closing 전력은 450mW이었다.

  • PDF

Novel Fabrication Process for Micro-Fluidic Channels and the Effect of the Surface States on the Fluid Flow (미세유로채널의 새로운 제작공정 및 표면상태가 유동에 미치는 영향)

  • 박미석;김진산;성인하;김대은;신보성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2004
  • Recently, with the development of bio-technology the interests in the micro-fluidic devices for analysis in the fields of biology and medical science have been steadily increasing. Although polymer is considered as one of the best materials for micro-fluidic devices. glass or silicon molds fabricated by photo-lithographic technique have been commonly used. However, it is generally perceived that the conventional photolithographic technique has the limitation for fabricating micro-channels for micro-fluidic devices. In this work, the possibility of fabrication of micro-fluidic channels on PDMS by using the mechano-chemical process and the effect of surface states on the fluid flow were investigated. Experimental results revealed that PDMS mold fabricated by the mechano-chemical process could be used effectively to replicate micro-fluidic channels with high reproducibility and dimensional accuracy. It was also found that the fluid flow generation and flow speed were largely affected by the hydrophilicity and the surface roughness of the micro-channel surfaces.

Quantitative Visualization of Oxygen Transfer in Micro-channel using Micro-LIF Technique (마이크로 레이저 형광 여기법을 이용한 미세채널 내부에서의 산소 확산에 대한 정량적 가시화)

  • Chen, Juan;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • In the present study, oxygen transfer process across gas-liquid interface in a Y-shape micro-channel is quantitatively visualized using the micro laser induced fluorescence (${\mu}$-LIF) technique. Diffusion coefficient of Oxygen ($D_L$) is estimated based on the experimental results and compared to its theoretical value. Tris ruthenium (II) chloride hexahydrate was used as the oxygen quenchable fluorescent dye. A light-emitting diode (LED) with wavelength of 450 nm was used as the light source and phosphorescence images of fluorescent dye were captured by a CMOS high speed camera installed on the microscope system. Water having dissolved oxygen (DO) value of 0% and pure oxygen gas were injected into the Y-shaped microchannel by using a double loading syringe pump. In-situ pixel-by-pixel calibration was carried out to obtain Stern-Volmer plots over whole flow field. Instantaneous DO concentration fields were successfully mapped according to Stern-Volmer plots and DL was calculated as $2.0675{\times}10^{-9}\;m^2/s$.