• 제목/요약/키워드: 미세 유체

검색결과 396건 처리시간 0.024초

표면 습윤성에 따른 마이크로 채널 내 유동 연구 (Study on Flow by Surface Wettability in Micro-channel)

  • 금현준;김지훈;변도영;이석한;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.66-70
    • /
    • 2007
  • 현재 많은 연구들이 작은 크기에 여러 공정을 집적시킬 수 있는 장점을 가진 마이크로 장치의 개발과 활용에 집중되고 었다. 마이크로 장치에서 가장 중요한 것은 미세 유동의 효율적인 제어이다. 본 연구에서는 마이크로 장치에 직접 적용 가능한 표면 개질 된 마이크로 채널의 유동에 대하여 고려하였다. 표면 개질(surface treatment)은 물리적, 화학적인 작용을 통해서 채널 내부 표면의 습윤성을 변화시켜 유동을 제어하는 방법이다. 친수성(glass)을 가지는 마이크로 채널 내부의 일부를 소수성(teflon)으로 개질 후, 고속카메라를 이용하여 채널 내부를 흐르는 유체의 유동 경계면 변화를 분석하였다. 또한 유동 해석을 위한 상용 코드(CFD-ACE)를 이용하여 유동에 대한 수치 해석을 진행하여 가시화된 실험 결과와 비교 분석하였다. 실험 결과와 수치 해석 결과를 통해, 친수성과 소수성 표면 배열에 따른 일시적인 유동 변화를 관찰하였다. 본 연구 결과를 통해 마이크로 채널 유동의 최적화 상태를 찾을 수 있으며, 보다 용이한 미세 유동 제어가 가능하다.

  • PDF

ER유체를 이용한 미세 연마 가공 (Micro Plishing using Electorheological fluid)

  • 김욱배;이성재;박철우;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.850-853
    • /
    • 2000
  • It is well-known that Electro-rheological(ER) fluid is a material(suspension) which shows the dramatic change of rheological properties under an electric field. Using these properties, the concept that variable apparent viscosity of ER fluid could be applicable to the polishing for micro parts was introduced. It was investigated that how it works for polishing and how it affects ER effect when abrasives were mixed with an ER fluid. Therefore a few structures for polishing using ER fluid was suggested and evaluated by means of experiments. In this paper, fundamental mechanism and experimental results are described.

  • PDF

MR유체를 이용한 미세 채널구조물의 표면연마 (Surface polishing of Micro channel using Magneto-Rheological fluid)

  • 이승환;김욱배;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1873-1876
    • /
    • 2003
  • Magneto-rheological polishing is a new technology used in precision polishing. It utilizes magneto-rheological fluid. nonmagnetic polishing abrasive, aqueous carrier fluids in magnetic field to remove material from a part surface. Silicon micro channel as work piece is fixed in the slurry which is made of MR fluid and CeO$_2$(10 vol%) abrasive particles. And permanent magnet rotate in the slurry to transfers magnetic force to abrasive particles by increasing yield strength of MR fluid. so, the obtained bottom surface roughness of micro channel by experiment reduced to Ra 0.010 $\mu\textrm{m}$ Rmax 0.103 $\mu\textrm{m}$ and finwall surface roughness of micro channel reduced to Ra 0.018 $\mu\textrm{m}$ Rmax 0.468 $\mu\textrm{m}$. At optimum conditions of variables, the workpiece as silicon micro channel have about 24 times smaller surface roughness than before polishing.

  • PDF

미세액적의 분사를 이용한 박막 패터닝 공정에 대한 수치적 연구 (Numerical Study on a Thin Film Patterning Process Using Microdroplet Ejection)

  • 서영호;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.658-659
    • /
    • 2008
  • Numerical simulation is performed for a microdroplet deposition on the pre-patterned micro-structure. The liquid-air interface is tracked by level set method improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to overcome the patterning error.

  • PDF

병렬 미세관 흐름비등의 유동특성 및 열전달 향상에 대한 수치적 연구 (Numerical Study on Flow and Heat Transfer Enhancement during Flow Boiling in Parallel Microchannels)

  • 전진호;이우림;서영호;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.472-473
    • /
    • 2008
  • Flow boiling in parallel microchannels has received attention as an effective heat sink mechanism for power-densities encountered in microelectronic equipment. the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the dynamics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.

  • PDF

다층구조의 미세유체채널을 이용한 자성입자 분리 (Magnetic beads separation using a multi-layered microfluidic channel)

  • 이혜린;송석흥;정효일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1685-1686
    • /
    • 2008
  • This paper presents the design and experiment results of a multi-layered microsystem for magnetic bead applications. The magneto-microfluidic device is designed for capable of separating magnetic beads. In the presence of the magnetic field, magnetic beads are attracted and moved to high gradient magnetic fields. A multi-layered microfluidic channel consists of top and bottom layers in order to separate magnetic beads in the vertical direction. Our channel is easily integrated magnetic cell sorter, especially on-chip microelectromagnet or permanent magnet device. Fast separation of magnetic beads in top and bottom channels can be used in high throughput screening to monitor the efficiency of blood and drug compounds.

  • PDF

투과성 입자로 이루어진 미세 칼럼의 유동 특성 (Flow Properties of Micro Column Packed with Perfusive Particles)

  • 김덕종;황윤욱;박상진;허필우;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.89-93
    • /
    • 2005
  • In this work, perfusive particles are used to form a micro column in a microfluidic chip and flow properties of the micro column are investigated. The packing flow velocity and the column/particle size ratio are shown to be important parameters affecting the packing density of the micro column. Experimental results show that the effect of the column/particle size ratio on the flow resistance of the micro column is negligible. This contrasts with previous works on the effect of the column/particle size ratio on the total pressure drop across the column.

  • PDF

미세 유체 상 PDMS 고분자 필름의 펨토초 레이저 어블레이션 및 천공 임계치 연구 (fs-laser Ablation and Optoperforation Threshold for PDMS Thin Film on $\mu$-channel)

  • 우숙이;;윤태오;정세채;박일홍
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.29-33
    • /
    • 2010
  • We have investigated fs-laser ablation as well as optoperforation threshold of PDMS (Polydimethylsiloxane) thin lid cover on ${\mu}$-channel with changing the flow medium from water to hemoglobin. The ablation threshold is found to be independent of both PDMS thin film thickness and flow medium, but the optoperforation threshold is dependent on the films thickness. The observation that the ablation process is well described with simple two-temperature model supposed that the cover lid PDMS of $\mu$-channel be processed with minimized thermal effects by fs-laser with low laser fluence.

UV 개질된 PMMA 미세유체 장치의 열가소성 폴리머 용융 접합 (Thermoplastic Fusion Bonding of UV Modified PMMA Microfluidic Devices)

  • 박태현
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.441-449
    • /
    • 2014
  • Thermoplastic fusion bonding is widely used to seal polymer microfluidic devices and optimal bonding protocol is required to obtain a successful bonding, strong bonding force without channel deformation. Besides, UV modification of the PMMA (poly-methyl methacrylate) is commonly used for chemical or biological application before the bonding process. However, study of thermal bonding for the UV modified PMMA was not reported yet. Unlike pristine PMMA, the optimal bonding parameters of the UV modified PMMA were $103^{\circ}C$, 71 kPa, and 35 minutes. A very low aspect ratio micro channel (AR=1:100, $20{\mu}m$ depth and $2000{\mu}m$ width) was successfully bonded (over 95%, n>100). Moreover, thermal bonding of multi stack PMMA chips was successfully demonstrated in this study. The results may applicable to fabricate a complex 3 dimensional microchannel networks.

오존 용해효율 향상을 위한 미세기포 특성 연구 (A Study on the Microbubble Characteristics of Ozone to Improve Dissolution Efficiency)

  • 김진훈;박종호
    • 한국유체기계학회 논문집
    • /
    • 제12권6호
    • /
    • pp.47-53
    • /
    • 2009
  • Ozone is a strong oxidant and a powerful disinfectant. In general, it has been used in drinking water treatment during last 100years. Ozone dissolution features are defined by the two categories of ozone contactors, bubble-diffuser and sidestream ozone contactor. Currently, sidestream-injection systems are gaining in popularity but operating cost might be slightly higher. Sidestream ozone system dissolve ozone into a sidestream flow via an injection setup or in the main process flow stream in some sidestream arrangements. The sidestream flow is subsequently mixed with the main process flow stream, which is directed to a reation tank or pipeline for oxidation and disinfection reactions. The purpose of this study is to suggest optimal operating pressure, to figure out the static-mixer effect and to understand the microbubble characteristics of ozone to improve dissolution efficiency.