• Title/Summary/Keyword: 미세 유체관

Search Result 28, Processing Time 0.019 seconds

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

Analysis of Flow in a Microchannel Branch by Using Micro-PIV Method (마이크로 PIV를 이용한 마이크로 분지관에서의 유동해석)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1015-1021
    • /
    • 2004
  • Micro-resolution Particle Image Velocimetry(Micro-PIV) was used to measure the flow in a micro-branch(Micro-Bypass). In this paper, effects of particle lump at the tip of a Micro-branch and difficulties of Micro-PIV measurements for microfluidics with branch passage were described. Micro-bypass was composed of a straight channel(200(100)${\mu}$m width ${\times}$ 80${\mu}$m height) and two branches which has 100(50)${\mu}$m width ${\times}$ 80${\mu}$m height. One of branches was straight and the other was curved. Experiments were performed at three regions along streamwise direction(entrance, middle and exit of branch) and five planes along vertical direction (0, ${\pm}$10, ${\pm}$20 ${\mu}$m) for the range of Re=0.24, 1.2, 2.4. Numerical simulation was done to compare with the measurements and understand the effects of particle lump at the tip of branch. And another fluid(3% poly vinyl Alcohol aqueous solution) were adapted for this study, so there were no particle sticking. In this case, we could get velocity difference between straight and curved branches.

Study on the Fire Extinguishing Performance of the Water Mist Gun used Twin-Fluid having a Low Pressure Nozzle (Twin-Fluid를 이용한 저압용 미분무 건의 소화성능에 관한 연구)

  • Park, Jeong-Yeul;Myoung, Sang-Youb;Ryou, Hong-Sun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.175-178
    • /
    • 2011
  • 본 연구에서는 기존의 고압으로 작동되는 고압 미분무 건과는 달리 Twin-Fluid의 Turbulence 및 Break-up 현상 등을 이용하여 저압상태에서 작동하며 경량화 및 소형화에 성공하여 기존 소방관의 진입이 어려운 장소 또는 수원으로부터 멀리 떨어진 곳에서 원활한 소화활동을 위해 개발한 저압용 미분무 건의 성능을 화재소화능력 시험을 통해 입증하였다. 화재 소화능력 시험을 수행한 결과 물과 질소가 Mixing Chmaber 내부에서 혼합되면서 두 유체간의 상호작용 및 운동 에너지으로 인해 물의 액적이 미세하게 Atomizing되어 목재화재는 물론 유류화재의 진압에 있어서도 우수한 성능을 확인할 수 있었다.

  • PDF

Numerical study on pressure drop with moving contact lines of dry slug flow in a hydrophobic minichannel (소수성 미니채널 내 움직이는 접촉선을 가진 액체슬러그의 압력 강하에 대한 수치해석)

  • Jeon, Jun Ho;Park, Su Chung;Yu, Dong In;Kim, Tae Hun;Lee, Yeon Won
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.116-121
    • /
    • 2020
  • In this study, a single-phase analysis of droplet slug with different contact angles was performed based on the visualization of experimental results. Droplet slug - flowing between gases in a hydrophobic mini channel - moves with a triple contact line without a gas liquid film on the wall. The results show that the rotational flow inside the droplet occurred; this was compared and verified with the results of two-phase analysis. The pressure field shows pressure rise at the front and rear ends. The effective length - the section that satisfies the laminar flow condition - became shorter as the droplet velocity increased. The Choi's correlation for the effective length agrees with this analysis results with a slight difference. This difference is judged as the difference in the contact angle of the slug model.

LymphanaxTM Enhances Lymphangiogenesis in an Artificial Human Skin Model, Skin-lymph-on-a-chip (스킨-림프-칩 상에서 LymphanaxTM 의 림프 형성 촉진능)

  • Phil June Park;Minseop Kim;Sieun Choi;Hyun Soo Kim;Seok Chung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • The cutaneous lymphatic system in humans plays a crucial role in draining interstitial fluid and activating the immune system. Environmental factors, such as ultraviolet light and natural aging, often affect structural changes of such lymphatic vessels, causing skin dysfunction. However, some limitations still exist because of no alternatives to animal testing. To better understand the skin lymphatic system, a biomimetic microfluidic platform, skin-lymph-on-a-chip, was fabricated to develop a novel in vitro skin lymphatic model of humans and to investigate the molecular and physiological changes involved in lymphangiogenesis, the formation of lymphatic vessels. Briefly, the platform involved co-culturing differentiated primary normal human epidermal keratinocytes (NHEKs) and dermal lymphatic endothelial cells (HDLECs) in vitro. Based on our system, LymphanaxTM, which is a condensed Panax ginseng root extract obtained through thermal conversion for 21 days, was applied to evaluate the lymphangiogenic effect, and the changes in molecular factors were analyzed using a deep-learning-based algorithm. LymphanaxTM promoted healthy lymphangiogenesis in skin-lymphon-a-chip and indirectly affected HDELCs as its components rarely penetrated differentiated NHEKs in the chip. Overall, this study provides a new perspective on LymphanaxTM and its effects using an innovative in vitro system.

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel (사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구)

  • Lee, Jun Kyoung;Lee, Kwan Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.557-566
    • /
    • 2015
  • The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction (마이크로 T자형 합류지점에서 기체 및 액체의 주입 방법이 기포 및 액체 슬러그 생성에 미치는 영향)

  • Lee, Jun Kyoung;Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.227-236
    • /
    • 2016
  • In the present experimental study, the effect of gas- and liquid-injected methods on the formation of bubble and liquid slug at the merging micro T-junction of a square microchannel with dimensions $600{\mu}m{\times}600{\mu}m$ was investigated. Nitrogen and water were used as test fluids. The superficial velocities of the liquid and gas were in the range of 0.05 - 1 m/s, and 0.1 - 1 m/s, respectively, where the Taylor flow was observed. The bubble length, liquid slug length, bubble velocity, and bubble generation frequency were measured by analyzing the images captured using a high-speed camera. Under similar inlet superficial velocity conditions, in the case of gas injection to the main channel at the merging T-junction (T_gas-liquid), the lengths of the bubble and liquid slug were longer, and the bubble generation frequency was lower than in the case of liquid injection to the main channel at the merging T-junction (T_liquid-gas). On the other hand, in both cases, the bubble velocity was almost the same. The previous correlation proposed using experimental data for T_liquid-gas had predicted the present experimental data of bubble length, bubble velocity, liquid slug length, and bubble generation frequency for T_gas-liquid to be ~24%, ~9%, ~39%, ~55%, respectively.