• Title/Summary/Keyword: 미세홈가공

Search Result 47, Processing Time 0.026 seconds

A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M) (화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구)

  • Lee, Hyeon-U;Park, Jun-Min;Jeong, Sang-Cheol;Jeong, Hae-Do;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

A Study on the Effect of Electrolytic In-process Dressing in Slot Grinding (미세홈 가공시 전해 인프로세스 드레싱의 영향에 관한 연구)

  • Yu, Jeong-Bong;Lee, Seok-U;Jeong, Hae-Do;Choe, Heon-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.18-25
    • /
    • 1999
  • Chipping is an unavoidable phenomenon in the slot grinding process of hard and brittle materials. However, it should be reduced for the improvement of surface integrity in the manufacture of optical and semiconductor components. Electrolytic In-process Dressing (ELID) technique for metal bonded superabrasive grinding wheel has been developed for mirror surface grinding of hard and brittle materials. Electrically dressed wheel surface has sharply exposed abrasives and results in lower grinding force, higher grinding efficiency in grinding. The paper deals with a newly developed method for slot grinding using ELID and was implemented to improve grooved surface quality and decreases chipping size on the edge of the groove. As a result, we accomplished chipping-free grooves and obtained the clear ground surfaces on glass and WC.

  • PDF

Minimization of Pattern Size on Polycarbonate Material in V-grooving (PC 폴리머 재료의 미세 V-홈 절삭가공 시 패턴 크기 최소화)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.523-527
    • /
    • 2011
  • Polycarbonate (PC) polymer is an engineering plastic which has large tensile strength and impact resistance and is wildly used as functional parts like micro mold. Direct machining of PC materials produces lots of burrs and rough surface due to large ductility and weak heat resistance and hence it is very difficult to machine PC materials using cutting tool to make micro-parts. In this study, elliptical vibration cutting (EVC) or 2-dimensional vibration cutting was performed to minimize the size of micro V-grooves on PC material. From the experimental results, it was observed that as the cutting depth and pattern size become smaller, the better machining quality was obtained, which is attributed to the positive effect of EVC that is dependent on the ratio of vibration amplitude to cutting depth. As the height of V-groove becomes less than $1.8{\mu}m$, however, the machining quality becomes lower as the pattern size decreases.

A Study on the Micro-machining Technique for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 가공기술에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

초경 합금의 초정밀 평면연삭 가공에 관한 연구

  • 강재춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.55-59
    • /
    • 1992
  • 최근 신 연삭 공구인 미세한 지립의 다이아몬드 휠을 이용함으로써 고경도와 취성을 지니는 엔지 니어링 세라믹스등의 신소재및 초경재 등 난삭재류를 대상으로 경면 가공을 추구하고자 노력이 진행중이다. 이는 래핑이나 폴리싱 등의 유리 지립에 의한 경면 창성법에 비하여 가공 능률이나 가공 정도가 높고 곡면이나 홈 등의 복잡 형상부의가공에도적용할 수 있다는 잇점이 있기 때문이다. 따라서 현재 이러한 신 연삭 가공법은 지금까지 연삭 가공후에 연마 가공 공정을 부가함으로써 초정 밀 효과를 지닐 수 있었던 각종 부품들에대한 단일 최종 마무리가공 공정으로의 응용에많은 기대를 걸고 있다. 본 연구는 높은 압축 강도치, 고온경도치와 내마모성, 강성 등을 지님으로써 외부 압력에 대한 변형률이 극히 적어 금형 칫수에가까운 제품을 생산할 수 있다는 특성으로 근래그 사용도가 급증 하고 있는 초경합금 금형재를 대상으로 해그 동안 난삭재에 대한 최적 가공 조건 설정이 정립되어 있지 못했던 관계로 인하여 기존의 숙련자 경험에만 주로 의존 할 수 밖에 없었던 단순한 다이아몬드 연삭 공구의 활용추세로부터 탈피하고 Diamond wheel 및 범용 연삭 공구를 최적으로 활용함으로써 연삭 가공의 초정밀화를 달성하며후 가공을 생략할 수 있는 가공 공정을 창출 해내기위하여, 상관 관계를 연삭 저항 및 가공 표면 품위등의 측면으로분석, 평가해봄으로써 초정밀 가공 차원에서의 최적 가공 조건 설정을 위한 지침을 명확하게 규명하기 위하여 실험적으로 수행하게 된 것이다.

Micro Groove Cutting Using Diamond Tools (다이아몬드 공구를 이용한 미세 홈 가공)

  • Choi, Young Jae;Song, Ki Hyeong;Lee, Seok Woo;Choi, Hon Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Micro patterns are used to maximize the performance and efficiency of the product in many industries such as energy, display, printing, biology, etc. Nowadays, the fabrication technology for micro patterns has been developed in various ways such as photolithography, laser machining, electrical discharge machining and mechanical machining. Recently, mechanical machining the size of smaller than 1 micrometer could be tried, because the technology related to the machining was developed brilliantly. This paper shows the experiments using cutting processes in order to fabricate the micro pattern. Micro patterns of the size of several micrometers were machined by the diamond tools of two different shape, the deformation and generation of burr were investigated.

The Influence of The Burr Reduction by The Chemical Reaction of Oxide Film on Aluminum (알루미늄 박막의 표면화학반응이 버 감소에 미치는 영향)

  • 이현우;박준민;정상철;정해도;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.907-910
    • /
    • 1997
  • With increasing the needs for micro and precision parts, micro machining technology has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. But there are many problems to be solved requiring a high-level technology. So this research presents the new method to fabricate a small part through applying chemical mechanical micro machining (C3M) for the Al wafer. Al(thickness I ,u m) was sputtered on the Si substrate. Al is widely used as a lightweight material. However form defect such as burr has a bad effect on products. To improve machinability of ductile material, oxide layer was formed on the surface of AI wafcr before grooving by chemical reaction with HN03(10wt%). And then workpieces were machined to compare conventional micro-machining process with newly suggested method at different machining condition such as load and feed rate. To evaluate whether or not the machinability was improved by the effect of chemical condition, such as the size, the width of grooves 'and burr generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

Machining of Micro Groove using Diamond Tool (다이아몬드 공구를 이용한 미세 홈 가공)

  • 임한석;김창호;김봉향;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.75-79
    • /
    • 1995
  • A cutting experiment using diamond tool was performed to make the die cabity which is composed of micro groove with mirror surface. Fine cutting depth was generated by the elastic recovery of the modified tool holder on the conventional M/C. Surface roughness and profile were investigated with cutting speed and depth and through the low cutting speed of 10mm/min, Rmax 0.005 .mu. m or less of machined surface could be achieved.

  • PDF

Micro-machining Characteristics using Focused Ion Beam (집속이온빔에 의한 미세가공 특성)

  • 이종항;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF