• Title/Summary/Keyword: 미세조직제어

Search Result 147, Processing Time 0.024 seconds

Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers (선박 프로펠러의 케비테이션 침식 저항 향상을 위한 Ni-P 무전해 도금층 형성 및 열처리를 통한 미세조직 제어)

  • Kim, Young-jae;Son, In-Jun;Yi, Seonghoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.409-415
    • /
    • 2017
  • For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.

Control of Nano-Scaled Surface Microstructure of Al Sample for Improving Heat Release Ability (Al 소재의 방열특성 향상을 위한 미세조직 제어 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at $100^{\circ}C$ for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is $80^{\circ}C$. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at $100^{\circ}C$, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Microstructural Control of Al-Sn Metal Bearing Alloy with Heat Treatment (열처리에 따른 메탈베어링용 Al-Sn 합금의 미세조직 제어)

  • Kim, Jin-Soo;Park, Tae-Eun;Hahn, Chun-Feng;Sohn, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Conventionally, Al-Sn bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. This article will describe the microstructural control of Al-Sn metal bearing alloy following heat treatment. When the pure aluminum rod dipped in the melt of tin maintained below the melting point of aluminum, the melting of aluminum was accelerated with penetration of tin along the grain boundary of aluminum. The length of plate-shaped eutectic tin was decreased with heat treatment time. With even longer heat treatment time over 1 hour the length of eutectic tin didn't decrease any more, while resulting in coarsening of aluminum matrix. Exuded liquid of eutectic tin was formed at the surface of Al-Sn alloy after heat treatment even at below eutectic temperature.

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition (급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어)

  • Kim, Yeon-Wook;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Asymmetric Rolling as Means of Texture and Ridging Control and Grain Refinement (집합조직과 이랑형표면결함의 제어 및 결정립 미세화 수단으로서의 비대칭압연)

  • Lee D.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.11-18
    • /
    • 2004
  • Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and $\{001\}<110>$ orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss $\{110\}<001>\;and\;\{112\}<111>$ orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve mechanical properties. Steel sheets, especially ferritic stainless steel sheets, and aluminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

  • PDF

압연접합법으로 제조한 다기능성 금속다층판재의 특성

  • Kim, Hyeong-Uk;Kim, Su-Hyeon;Eo, Gwang-Jun;Jo, Jae-Hyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.60.1-60.1
    • /
    • 2012
  • 구조재료에 있어서 강도 및 연신율 등의 기계적 특성을 향상시키기 위하여 합금설계 및 미세조직을 제어하는 방법이 가장 대표적이다. 그러나 이러한 방법에 의하여 얻을 수 있는 기계적 특성에는 한계가 있으며 추가로 요구되는 기능성을 만족시키기는 더욱 곤란하다. 최근 기계적 특성향상과 기능성를 부여하기 위한 한 방법으로 단일합금이 아닌 여러 가지 합금 층으로 이루어진 다층판재를 제조하여 기계적 특성뿐만 아니라 기능성이 우수한 합금판재를 얻으려는 연구가 시도되고 있다. 본 연구에서는 두 가지 이상의 알루미늄합금을 압연접합하여 금속 다층판재를 제조하는 공정을 개발하였으며 기존 단일 합금판재보다 기계적 특성뿐만 아니라 우수한 기능성을 갖는 판재를 제조할 수 있었다. 먼저 우수한 강도와 브레이징성을 나타내는 브레이징용 고강도 알루미늄 다층판재와 내식성이 개선된 고강도 알루미늄 다층판재를 제조하기 위하여 다양한 합금 층 조합을 설계하고 상온 압연접합하는 방법으로 다층판재를 제조하였다. 제조된 다층판재는 합금층의 조합 및 가공 열처리 공정에 따라 서로 다른 특성을 나타내었으며 이러한 특성을 극대화 하기위하여 공정을 최적화하였다. 지금까지의 연구를 통하여 제조된 여러 가지 특성을 갖는 다층판재와 가공열처리에 따른 특성 변화에 대하여 소개하였다.

  • PDF

Reduction of Grain Growth for Al6061 Alloy by the Die Cooling System in Hot Extrusion Process (Al6061 합금의 열간 압출공정에서 금형 냉각시스템에 의한 압출재의 결정립 성장 제어)

  • Ko, Dae-Hoon;Lee, Sang-Ho;Ko, Dae-Cheol;Kim, Ho-Kwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.673-680
    • /
    • 2009
  • In this study, die cooling system using the nitrogen gas has been applied to hot aluminum extrusion process for refining grains and reducing of grain growth. Computational fluid dynamics(CFD) has been carried out to evaluate die cooling effect by nitrogen gas, and the results of CFD have been used to FE-simulation for the prediction of the extrudate temperature in hot extrusion process. Experimental hot extrusion has been performed to observe microstructure and to measure temperature of extrudate. The results of FE-Simulation have been good agreement with those of experiment. Finally, process condition of hot extrusion can be established to reduce grain growth of Al6061 through the experiment.