• Title/Summary/Keyword: 미세액적

Search Result 115, Processing Time 0.021 seconds

Simple and Highly Efficient Droplet Merging Method Using a Microfluidic Device (미세유체소자를 이용한 간단하고 효율적인 액적의 병합)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. Using a cross channel with inflows of one oil phase through the main channel and two water phases through the side channels, two droplets of different sizes can be generated alternatingly in accordance with flow rate difference of the water phases. It is shown that for a fixed oil phase flow rate, the flow rate of one water phase required for alternating droplet generation increases linearly with the flow rate of another water phase. By this method, the droplets are merged with 100 % efficiency without any additional driving forces.

Numerical Study on Drop Formation Through a Micro Nozzle (미세노즐을 통한 액적형성에 관한 수치적 연구)

  • Kim Sungil;Son Gihun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.205-213
    • /
    • 2005
  • The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satellite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.

Numerical Study on Fire Suppression using a Water-mist System Considering Droplet Breakup (액적분열을 고려한 미세물분무 화재제어에 대한 수치해석)

  • Ko, Seung-Woo;Ko, Kwon-Hyun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.625-629
    • /
    • 2006
  • This paper describes the effect of the droplet breakup process on fire suppression using a water-mist system, which is considered as a alternative to sprinkler fire suppression system. In the evolution of the water-mist, the droplet breakup process is an important phenomenon because it may significantly affect the droplet evaporation rate. The Fire Dynamics Simulator (FDS, Ver. 4.0) code, which is widely used for the simulation of fire dynamics, is used for the present simulation, and it is modified to consider the droplet breakup phenomena. The Prediction by the modified code shows good agreement with experimental data for the temperature. The original FDS predicts higher temperature about $30^{\circ}C$ than experimental data. From the results, it is concluded that the droplet breakup phenomena must be considered for more precise simulation of fire suppression process.

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2658-2663
    • /
    • 2008
  • In the present study, we designed a microfluidic flatform that generates monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported toward the flow-focusing geometry, where each droplet is broken up into the targeted size by the action of viscous stresses. Because the droplet prior to rupture blocks the straight channel that leads to the flow-focusing geometry, it moves very slowly by the pressure difference applied between the advancing and receding regions of the moving droplet. This configuration enables very low flow rate of inner fluid and higher flow rate ratio between inner and outer fluids at the flow-focusing region. It is shown that the present microfluidic device can generate droplets with diameters about 1 micrometer size and standard deviation less than 3%.

  • PDF

Micro Patterning of Conductive Line by Micro Droplet Ejection of Nano Metal Ink (나노 금속잉크의 미세 액적 토출을 이용한 마이크로 패터닝)

  • Seo S.H.;Park S.J.;Jung H.C.;Joung J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.689-693
    • /
    • 2005
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. For the application of inkjet printing to electronic field, one of the key factors is exact realization of designed images into printed patterns. In this work, micro patterning for conducting line has been studied using the piezoelectric print head and silver nano ink. Dimensions of printed images have been predicted in terms of print resolution and diameter of a single dot. The predicted and the measured values showed consistent results. Using the results, the design capability for industrial inkjet printing could be achieved.

  • PDF

Self-healing capsule manufacturing and characteristic analysis using microfluidic control method droplet manufacturing technology (미세 유체제어 방식 드랍렛 제작 기술을 이용한 자가치유 캡슐 제작 및 특성 분석)

  • Ji, Dong-min;Song, Won-Il;lee, ja sung;Ramos-Sebastian, Armando;Kim, S-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.251-252
    • /
    • 2022
  • The microfluidic controlled droplet manufacturing system is one of the most powerful methods for capsule manufacturing. The microfluidic control method can control the type and size of the capsule by changing the size and configuration of the channel. In addition, by increasing the number of channels, capsules of uniform size can be mass-produced. In this paper, a capsule manufacturing system including flow-focusing and T junction method was designed. In addition, the effectiveness of this system was verified by manufacturing multi-emulsion capsules with a size of 2.2 to 3 mm.

  • PDF

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions (미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화)

  • Song, YoungShin;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.632-637
    • /
    • 2014
  • A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to $60{\mu}m$, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

Preparation of Monodisperse PEGDA Microparticles Using a Dispensing Needle Based Microfluidic Device (주사기 바늘 기반의 미세유체 장치를 이용한 단분산성 PEGDA 입자의 제조)

  • Jin, Si Hyung;Kim, Taewan;Oh, Dongseok;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.58-64
    • /
    • 2019
  • This study presents a novel method for preparing monodisperse polyethylene glycol diacrylate (PEGDA) microparticles in a dispensing needle based microfluidic device. The microfluidic devices are manufactured by manually assembling various off-the-shelf products without using additional equipment. In this microfluidic device, the volumetric flow rates of the dispersed phase of PEGDA solution and the continuous phase of oil are controlled to generate monodisperse PEGDA droplets. The PEGDA droplet contains photo-initiator thus it is crosslinked to microparticle by photopolymerization at the ends of the device. The particle size is easily controlled by adjusting the volume flow rate and the size of the microfluidic device. The monodispersity of the particles is calculated by a coefficient of variation of 2.57%. To demonstrate the biological applications of PEGDA particles, cells are encapsulated and observed for proliferation and viability.

MICROSTURCTURE AND MAGNETIC PROPERTY OF NiZn-FERRITE POWDER SYNTHESIZED BY ULTRASONIC SPRAY PYROLYSIS PROCESS (초음파 분무 열분해법으로 합성한 NiZn 페라이트 분말의 미세구조 및 자기 특성)

  • 남중희;김민상;박상진;김효태;정상진
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.114-115
    • /
    • 2002
  • 다성분계 세라믹스에 대하여 초미립 및 나노 분말을 제조하기 위해 공침법, 비정질 citrate법, 무기 금속염을 이용한 sol-gel법, 분무 열분해법 등과 같이 비교적 단순한 공정이면서 입도 분포가 좁고 재현성이 우수한 구형의 초미립 또는 나노 분말의 제조에 적합한 방법들이 많이 연구되고있다[1-3]. 분무 열분해법은 출발물질로 용액을 사용하고 미세한 액적(droplet)을 초음파 분무 후 열분해 하여 분말을 합성하는 방법으로, 입자의 조성이 균질하고 구형의 형상을 갖는 우수한 결정상을 얻을 수 있다. (중략)

  • PDF