• Title/Summary/Keyword: 미세사출

Search Result 104, Processing Time 0.018 seconds

Effect of Molding Conditions on Demolding Force During Injection Molding of Parts with Micro-features (미세 패턴 사출 성형에서의 이형력에 대한 성형 조건의 영향 평가)

  • Park, S.H.;Yoo, Y.E.;Lee, W.I.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • Micro/nano-injection molding is one of the main processing techniques for polymer micro-fabrication. Most of the difficulties encountered in polymer micro-molding are caused by the demolding, rather than the filling of molds. Therefore, studying the demolding process is vitally important for manufacturing polymer replicas. The most important parameters are the thermal stress, friction and adhesion forces, and mechanical strength of the resist. In this research, we determinedthe effects of the processing conditions on the ejection force for cases involving two common thermoplastic polymers. The results showed that the processing conditions noticeably influenced the ejection force.

A numerical study on micro leakage behaviors at cavity edge during photo reaction injection molding (광반응사출성형 시 캐비티 엣지에서 발생하는 미세누출현상에 관한 해석적 연구)

  • La, Moon-woo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.8-13
    • /
    • 2016
  • Despite technological advance, there have been several troubles in photo reaction injection molding (photo RIM) to produce ultra thin light guide panels (LGPs). In this study, micro leakage problem at cavity edge during photo RIM was investigated numerically. In order to obtain optimal processing conditions, we regulated inlet pressure of injected resin at the cavity edge and figured out micro leakage behaviors. At low inlet pressure (less than 100 Pa), though the micro leakage problem was not occurred, another problem, short shot due to not enough driving force, was appeared More than 1,000 Pa of the inlet pressure, injected resin was rapidly leaked through the micro gap at the cavity edge. Finally, we obtained optimal inlet pressure around 600 ~ 1,000 Pa. At this region, injected resin fully filled the cavity without micro leakage behavior. Based on the present study, further comparative investigations with experimental photo RIM should be performed to find optimal processing conditions for produce ultra thin LGPs.

Microstructural Morphology of Molded Thin Composites of Thermotropic Liquid Crystalline Polymer and Polyamide 6 (서모트로픽 액정폴리머와 폴리아미드6으로 성형된 얇은 복합재료의 미세구조형태)

  • Choe, Nak-Sam;Choe, Gi-Yeong;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1703-1711
    • /
    • 2000
  • Microstructural morphology of molded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) has been studied as a function of epoxy fraction. Injection-moulding of a thin composite plaque at a temperature below the melting point of the LCP fibrils by suing the extruded LCP/PA6 pellets produced multi-layered structures: 1) the surface skin layer with thickness of 65-120 ym exhibiting a transverse orientation, 2) the sub-skin layer with an orientation perpendicular to the surface skin, i.e. in the flow direction, 3) the core layer with arc-curved flow patterns. Similar microstructural orientations were observed in the respective layers for the composite plaques with different fractions of epoxy.

A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold ($50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구)

  • Hwang C. J.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

Injection Molding Characteristics of COC and PP in Micro Rib Structure (미세 리브 구조에서 COC 및 PP의 사출성형 특성)

  • Jung, W.C.;Heo, Y.M.;Shin, K.H.;Yoon, G.S.;Chang, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.158-163
    • /
    • 2006
  • The demand for the miniaturization and high-precision of machine part has recently increased in new technology like biotechnology(BT) and nanotechnology(NT). The purpose of this study is to analyze the molding characteristics according to injection conditions by measuring the filling height in micro injection molding of the polypropylene(PP) and cyclic olefin copolymer(COC). The result shows that the filling effect of COC is better than that of PP in micro rib structure with injection molding process.

Micro-replication quality of Fresnel Lens in UV micro-replication process (프레넬 렌즈 UV 미세복제 공정에서의 전사특성에 관한 연구)

  • Lim J.;Lee N.;Kim S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.79-82
    • /
    • 2005
  • Fresnel lens has number of applications in the optical systems because of its advantages. It is nearly flat lens that has small weight. It is conventionally used in lighthouse beacons, condensing unit of overhead projector and etc. Recently, demands of small size optical systems such as display units, information storage systems, optical detecting units had increased. Conventional manufacturing process of high quality Fresnel lens is direct machining. But it is not suitable for mass production because of high cost and long cycle time. Replication process is more suitable for mass production. But the Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication process of blade shape pattern that has maximum height of $280{\mu}m$, aspect ratio 1.4 for Fresnel lens application.

  • PDF

Paticulate Processing for High Tech Materials and Advanced Forming (첨단기술 재료와 신성형방법을 위한 분말 공정)

  • 문인형
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.1-1
    • /
    • 1993
  • 분말야금 또는 분말재료공정은 금속과 세라믹에 기초를 둔 신소재 가공기술로서 점차 그 역할이 증대되고 있다. 분말 공정은 합금의 신축성이라는 고유 잇점을 비롯하여, 조성적 균질성, 미세한 조직특성, 그리고 완성 또는 준 완성형태의 성형가능성 등을 제공하는 것으로 특징지워지는데 이러한 모든 것들은 첨단 재료의 제조가공을 위해서 요구되는 특징들이다. 본 강연의 전반부에서는 분말야금공정의 일반적 특징과 이제까지 개발된 첨단 재료들을 분류하고 그 현황을 살펴보았다. 강연의 후반부에서는 기계적 합금화, 고온등압성형, SHS, 금속사출성형과 같은 첨단 분말 공정을 간단하게 소개한다. 이들 새로운 공정은 대부분의 금속 및 세라믹 신소재의 제조가공기술로 도입되어 널리 응용되고 있다. 오늘날 분말재료공정은 신소재를 얻는 신기술 또는 신공정의 동의어로 이해되고 있다. 그러나 미래에 있어서도 더욱 새로운 첨단재료를 개발하는 데는 이러한 분말야금공정에 크게 의존하지 않을 수 없을 것이다.

  • PDF

Micromachining of powder injection molded parts using ns UV laser (나노초 UV 레이저를 이용한 분말사출 부품의 미세기공)

  • Ahn, Dae-Hwan;Park, Seong-Jin;Kwon, Young-Sam;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • ln this work, the feasibility of using a UV laser for micromachining of powder injection molded parts is examined experimentally. The results, although preliminary, indicate that microfabrication of various parts by laser micromachining of the injection molded parts and then sintering is promising. Particularly, micromachining of a mixture composed of stainless steel particles and polyrner binders was studied using a KrF excimer laser.

  • PDF

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

[ μ ]-Injection Molding Process Analysis for In-Plane Microneedle (In-Plane형 마이크로니들의 미세사출공정해석)

  • Kang J. J.;Heo Y. M.;Jung T. S.;Lee S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.491-495
    • /
    • 2005
  • Micro injection molding analysis for microneedle fabrication was performed in the present study. The dimensions of width and thickness for in-plane microneedle are $600{\mu}m$, $500{\mu}m$, respectively. A delivery system based on guidelines for traditional injection molding was designed for four-cavities molding system. To investigate the effects of processing conditions in the mirconeedle fabrication, injection molding analysis using commercial code was performed. It was shown that the total injection time has a significant effect on the fabrication of in-plane microneedles.