• 제목/요약/키워드: 미세방전가공

검색결과 98건 처리시간 0.032초

블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성 (Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites)

  • 정현아;이창훈;강명창
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공 (Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die)

  • 박찬해;김종업;왕덕현;김원일
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구 (Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures)

  • 김대일;장승환
    • Composites Research
    • /
    • 제19권2호
    • /
    • pp.13-19
    • /
    • 2006
  • 본 논문에서는 미세 방전가공(Electrical Discharge Machining; EDM) 기계를 위한 샌드위치 구조를 설계하기 위해 복합재료의 적층 순서, 두께, 그리고 리브의 형상 등을 고려한 파라메트릭 연구를 수행하였다. 샌드위치 구조는 면재인 섬유강화 복합재료와 심재인 레진 콘크리트 및 고분자 포움으로 이루어졌다. 컬럼은 정적 굽힘강성과 비굽힘강성을 높이기 위해 십자 리브를 가진 형상으로 설계하였으며, 적층 순서와 두께를 조절하였다. 베드의 경우 양방향의 강성을 동시에 향상시키기 위해 적층 순서와 리브 형상을 조절하였다. 최적의 고강성을 얻기 위하여 리브의 두께와 면재의 두께 등 설계 파라메터의 최적치를 제안하였다. 각 설계 파라메터의 변화에 따른 구조의 정적, 동적 강성의 변화를 확인하기 위해 유한요소해석을 수행하였으며, 진동 실험을 통하여 각 요소의 고유진동수와 감쇠비를 측정하여 비교하였다. 이러한 결과로부터 고정밀 미세 방전가공 기계 구조를 위한 최적의 형상조건을 제안하였다.

WEDM 프로세스의 방전 안정성 향상을 위한 실시간 미세제어에 관한 연구 (A Study on the Real-time Micro Control of WEDM Process for the Improvement of Discharging Stability)

  • 권신;남성호;양민양
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.27-36
    • /
    • 2005
  • Some studies have shown that unstable factors are inherent in WEDM process, causing the instability of the discharging pulse to reach about 40∼60% in normal machining. Transient stability is an important subject in WEDM process since there is a close relationship between stability and machining performance, such as the characteristics of a machined surface, machining speed and problem of instability like wire rupture phenomenon. Among the many machining parameters affecting WEDM machining state, three specific parameters (Vr, Ip, off time ) are major controllable variables that can be applied in transient stability control. And, this research investigates the implementation and analysis of real-time micro control of the discharging stability of WEDM (Wire Electric Discharge Machining) process.

전해 가공을 위한 미세 전극 제작 (Fabrication of Micro Electrodes for Electrochemical Machining)

  • 김보현;박병진;주종남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.407-412
    • /
    • 2005
  • For micro electrochemical machining (ECM), tool electrodes with various sizes and shapes are necessary. In this paper, tool electrodes were fabricated by micro electrical discharge machining (EDM). Electrode material is tungsten carbide which has high rigidity and good conductivity for micro electrochemical machining. Disk-type and sphere-type electrodes were fabricated to prevent taper shape of side walls or to produce spherical features. Various 3D micro structures were fabricated by electrochemical milling with developed electrodes.

  • PDF

보이스코일 액츄에이터로 이송되는 미세구멍 가공용 방전 가공기의 작동특성 연구 (A Study on the Performance Evaluation of a Voice Coil Actuator for Electro-Discharge Micro-Drilling Machine)

  • 양승진;백형창;김병희;장인배
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.152-158
    • /
    • 2001
  • In this paper, we have developed an electro discharge machine for micro drilling driven by a voice coil actuator. Because the voltage signal of the electro-discharging circuit shows a lot of peaks and valleys, the active type low-pass filtering technique is adopted to get the average of the signal. Since the motion of the voice coil is precisely controlled by the error value between the object voltage value and the measured one, it is possible to prevent the mechanical contact between the rotating electrode and the workpiece and to maintain the appropriate machining conditions during the process. The electro-chemical machining technology was also adopted to make small diameter electrodes. Pure water is used as a dielectric. The machining procedure is performed to verify the feasibility of the developed system. It takes about 10 seconds to drill the ${\phi}m$100${\mu}m$ hole to the 100${\mu}m$ thickness stainless steel plate. The machining time depends on the values of the resister and the capacitor. There may exist the optimal values of time constant and the tendency is displayed In the appendix.

  • PDF

가공액의 초음파 진동 및 절연 공구를 이용한 미세방전가공 (Micro Hole Machining by EDM Using Insulated Tool Combined with Ultrasonic Vibration of Dielectric Fluid)

  • 박민수;정도관;이강희;주종남
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.180-186
    • /
    • 2011
  • This paper describes a micro electrical discharge machining (MEDM) technique that uses an insulated tool in combination with ultrasonic vibration to drill micro holes. As the machining depth becomes deeper, the dispersion of debris and circulation of the dielectric fluid are difficult to occur. Consequently, machining becomes unstable in the machining region and unnecessary electrochemical dissolution and secondary discharge sparking occur at the tool side face. To reduce the amount of unnecessary side machining, an insulated tool was used. Ultrasonic vibration was applied to the MEDM work fluid to better remove debris. Through these methods, a $1000\;{\mu}m$ thick stainless steel plate was machined by using a $73\;{\mu}m$ diameter electrode. The diameters of the hole entrance and exit were $96\;{\mu}m$ and $88\;{\mu}m$, respectively. It took only 351s to completely drill one hole.

전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성 (Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite)

  • 강명창;탁현석;이창훈;김남경
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.