• Title/Summary/Keyword: 미생물 군집 분석

Search Result 357, Processing Time 0.024 seconds

Bacterial Community Profiling during the Manufacturing Process of Traditional Soybean Paste by Pyrosequencing Method (Pyrosequencing을 이용한 전통된장 제조과정 중 세균군집구조의 분석)

  • Kim, Yong-Sang;Jeong, Do-Yeon;Hwang, Young-Tae;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In order to evaluate the diversity and change of bacterial population during the manufacturing process of traditional soybean paste (doenjang), bacterial communities were analyzed using 16S rRNA gene-based pyrosequencing. In rice straw, the most important inoculum source for fermentation, the bacterial sequences with a relative abundance greater than 1% were assigned to four phyla, Proteobacteria (71%), Actinobacteria (20.6%), Bacteroidetes (4.2%), and Firmicutes (1.3%). Unlike bacterial community composition of rice straw, a different pattern of bacterial population in meju was observed with predominantly high abundance (99.1%) of Firmicutes. Phylum composition in young doenjang was almost same as that of meju. Major genera in young doenjang were Bacillus (81.3%), Clostridium (6.9%) and Enterococcus (6.3%) and the predominant species among bacterial population was B. amyloliquefaciens (63.6%). Abundance of the phylum Firmicutes in mature doenjang was 99.98%, which was even higher value than those in meju and young doenjang. Predominant species in mature doenjang were B. amyloliquefaciens (67.3%), B. atrophaeus (12.7%), B. methylotrophicus (6.5%), B. mojavensis (3.2%), and B. subtilis. (2.5%), which were also identified as major species of the microbial flora in meju. These results suggested that rice straw was a primary source for supplement of Bacillus species in manufacturing the traditional doenjang and that some species of Bacillus strains were mainly involved in the fermentation process of traditional doenjang.

Changes of Microbial Community Structure According to a Changes of Season and Influent Characteristics in Biological Wastewater Treatment (생물학적 폐수처리 공정에서의 계절 및 유입수 성상 변화에 따른 미생물 군집 특성 변화)

  • Son, Hyeng-Sik;Son, Hee-Jong;Kim, Mi-A;Ryu, Eun-Yeon;Lee, Geon;Lee, Sang-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.780-786
    • /
    • 2010
  • The bacterial community structure in biological reactor in wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH). Samples were collected at different three points in wastewater treatment system. Through treatment processes, BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of was removal efficiency was 83.1~98.6%, 67.2~85.2% respectively. Microbial community of aerobic tank and oxic tank were similar but anoxic tank was different (RRP group was increased about tripple) by DGGE and FISH in sludge (2007 October and 2008 January). Samples in 2007 October and 2008 January were dominant ${\alpha}$-Proteobacteria and CF group respectively. Sludge in 2008 April were different comparing former results dominant others as 65~80%. Others group was dominant. Eubacteria by FISH with the probe EUB338 was about $1.7{\sim}7.6{\times}10^9\;cells/mL$. It could be successfully observed bacterial community in biological wastewater system.

The Characteristics of Microbial Population Community Structure by an Addition of External Carbon Source in BNR Process for Low C/N Ratio Sewage Treatment (낮은 C/N비 하수의 외부 탄소원 주입에 따른 생물학적 질소제거에서 미생물 군집 구조특성)

  • Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2008
  • This study investigated the characteristics of nitrogen removal and microbial community in a lab-scale A$_2$O activated sludge process filled with the fluidized media at an aerebic basin. The change of microbial community was monitored based on quinone profiles of activated sludge according to feeding sewage with/without external carbon source. Low C/N ratio(COD$_{Cr}$/T-N of 1.24) sewage was fed. The obtained results from this study were as follows; Ubiquinone(UQ) in the influent was in the descending order of UQ-8, UQ-10 and UQ-9. Menaquinone(MK) was simpler and much less than UQ. The ratio of UQ/MK was less than 0.41 and the dissimilarity was below 0.26. Without an external carbon source, MK-8 was the dominant species and there were 3 kinds of quinone species and low DQ and EQ values in an anaerobic basin. The ratio of UQ/MK increased to 2.3 in an anoxic basin. In an oxic basin, UQ-7 and UQ-8 were the dominant species. UQ-7 was dominating in suspended microorganisms, while UQ-8 was in attached microorganisms. With an external carbon source addition, MK-8 decreased but UQ-8 increased in an anaerobic basin. So did quinone species, DQ and EQ values. There was also a change in an anoxic basin with the improvement of denitrification. UQ-8 decreased instead, MK-7 and MK-8 increased. UQ/MK ratio decreased 2.3 to 1.4. It means that the dominant species change from Pseudomonas sp. to Bacillus and Micrococcus species. etc. In an oxic basin, UQ-8 replaced UQ-7 in suspended microorganisms and UQ-10 replaced UQ-8 in attached microbials. This seemed related with the growth of Nitrosomonas and Nitrobactor species.

Comparison of Microbial Community of Orchard Soils in Gyeongnam Province (경남지역 과수원 토양 미생물 군집 비교)

  • Lee, Young-Han;Lee, Seong-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.492-497
    • /
    • 2011
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average concentrations in the orchard soils were $332nmol\;g^{-1}$ of total FAMEs, $94nmol\;g^{-1}$ of bacteria, $46nmol\;g^{-1}$ of Gram-negative bacteria, $42nmol\;g^{-1}$ of Gram-positive bacteria, $4.8nmol\;g^{-1}$ of actinomycetes, $54nmol\;g^{-1}$ of fungi, and $9.1nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, sandy loam soils had significantly low ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of loam soils (p<0.05), indicating that microbial stress decreased. The average soil microbial communities in the orchard soils were 28.1% of bacteria, 15.9% of fungi, 13.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.8% of arbuscular mycorrhizal fungi, and 1.4% of actinomycetes. The soil microbial community of Gram-negative bacteria in peach cultivating soils was significantly higher than that of pear cultivating soils (p<0.05).

Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea (대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석)

  • Ko, So-Ra;Ahn, Chi-Yong;Lee, Young-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.225-235
    • /
    • 2011
  • The change of microbial communities during cyanobacterial bloom was comparatively analyzed by 16S rDNA PCR-DGGE in Daechung Reservoir during 2003~2005. Morphological analysis showed that Cyanophyceae dominated algal community in the bloom. Dominant cyanobacteria were Microcystis, Planktothrix (Oscillatoria), Phormidium and Anabaena. We used 16S rDNA-denaturing gradient gel electrophoresis (DGGE) profiles and phylogenetic affiliations of the DGGE bands to analyze the community structure and diversity of the predominant microbial community. The DGGE band patterns demonstrated that the most frequent bands were identified as Microcystis during the monitoring periods, Planktothrix also dominated on September 2003 and 2004, whereas Anabaena was showed a peak on September 2005 and Aphanizomenon on August 2003. DGGE and phylogenetic analysis provided us new information that could not be obtained by traditional, morphological analysis. The relationship between cyanobacteria and other aquatic bacteria can be traced and their genetic diversity also identified in detail.

Microbes causing abnormal Takju fermentation in traditional wheat-based Nuruk: A case study (밀누룩으로 제조한 전통탁주의 이상발효 원인 규명: 사례분석)

  • Yun, Jeonghyun;Lee, Jang-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In this article, we report a case study on the cause of abnormal fermentation of Takju based on a microbial community analysis of wheat-based Nuruk and Takju using next-generation sequencing. The microbial community showed notable changes during alcoholic fermentation. Members of the genera Aspergillus and Staphylococcus were dominant in Nuruk, whereas Saccharomyces, Pediococcus, Bacillus, Lactobacillus, and Enterobacter were predominant during Takju fermentation. In particular, members of the Enterobacter and Bacillus genera that were present were identified as the opportunistic pathogens B. wiedmannii and E. cloacae. The relative abundance of two species increased in Mitsul-3, wherein the concentration of organic acid rapidly decreased, and in Deotsul-1, in which raw materials were added. Furthermore, the relative abundance of lactic acid bacteria (LAB) in both the Nuruk and Takju was very low. Therefore, this result showed that the abnormal proliferation of E. cloacae and B. wiedmannii in Takju was due to the absence of LAB.

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

Bacterial Community of Traditional Doenjang in Longevity Area and Antagonistic Effect against Bacillus cereus (장수지역 전통된장의 미생물 군집 및 바실러스 세레우스 길항 효과)

  • Jeon, Doo-Young;Yoon, Gi-Bok;Yoon, Yeon-Hee;Yang, Soo-In;Kim, Jung-Beom
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.1035-1040
    • /
    • 2016
  • This study investigated the prevalence of foodborne pathogens and the bacterial community of traditional Doenjang collected from a longevity area in Korea as well as the antagonistic effect of traditional Doenjang isolates against Bacillus cereus to estimate the microbiological safety of traditional Doenjang. Aerobic bacteria showed $10^6{\sim}10^9CFU/g$, whereas coliform bacteria was not detected. Foodborne pathogens were not detected except B. cereus, which was detected in seven samples out of 10 Doenjang samples. A total of 327 isolates were identified from traditional Doenjang. The isolates consisted of Bacillus subtilis 155 (47.4%), Bacillus licheniformis 68 (20.8%), Bacillus amyloliquefaciens 46 (14.1%), and Bacillus pumilus 18 (5.5%). Antagonistic effect against B. cereus was detected in 20 (6.1%) of 327 isolates, which consisted of B. subtilis (12 strains), B. amyloliquefaciens (5 strains), and B. licheniformis (3 strains). The inhibitory zone for the antagonistic effect was 9.0~12.0 mm in diameter. Although a small amount of traditional Doenjang was tested in this study, these results indicated that the potential risk of B. cereus in traditional Doenjang is lower than generally presumed. It is necessary to monitor the antagonistic effect of traditional Doenjang isolates against B. cereus.

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 메탄 하이드레이트 퇴적토의 미생물 군집 특성)

  • Shin, Ji-Hye;Nam, Ji-Hyun;Lee, Jin-Woo;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.

The Bacterial Community Structure in Cheonho Reservoir Dominated by Cyanobacteria (봄철 Cyanobacteria 가 우점한 천호지에서 세균군집구조의 변화)

  • 홍선희;전선옥;안태석;안태영
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • The composition of bacterial communities was detected in surface water of Cheonho Reservoir dominated by cyanobacteria, using fluorescent in situ hybridization (FISH) method. Total bacterial numbers were very high ranging from 0.6~$1.3{\times}10^7 \cells{\cdot}ml^-1$, whereas the ratio of Eubacteria to total bacteria was 29.8~45.8%, which was lower than that in other freshwater ecosystems. On average only 2.1% of DAPI-stained bacteria were detected by FISH with probes for $\alpha$, $\beta$, and $\gamma$-groups, respectively. Unknown eubacteria which was not bound to any probes except EUB 338, was relatively high. On the other hand, the Cytophaga-Flavobacterium group increased following the change of dominant species from Anabaena sp. to Microcystis sp. This result showed that bacterial communities could be affected by phytoplanktons, especially cyanobacteria.