• Title/Summary/Keyword: 미생물농약

Search Result 280, Processing Time 0.021 seconds

Effects of Organic Materials on Insect and Disease Occurrence and Fruit Quality in Pear Orchards (친환경 자재가 배 과원의 병해충 방제 효과 및 과실 품질 특성에 미치는 영향)

  • Choi, Hyun-Sug;Wu, Xiu-Yu;Kim, Wol-Soo;Lee, Youn;Choi, Byoung-Min;Kuk, Yong-In
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.405-416
    • /
    • 2011
  • Organic materials, such as chitin incubated solution (CIS) combined with neem oil (NO), nano silver silica (NSS), and Bordeaux mixture (BDM), were applied with and without agricultural chemicals (AC) (insecticide and fungicide) to investigate scab and mealybug occurrences and fruit qualities on 'Niitaka' pear trees in orchards in 2006. Fruits and leaves grown under CIS+NO without AC had less than 30%, scab occurrence, but CIS+NSS or CIS+BDM without AC had higher scab occurrence. Organic materials with AC decreased the scab to less than 20%. All treatments decreased mealybug occurrences to less than 10%, except for the fruits grown under CIS+BDM without AC. Fruit qualities varied among the treatments. Hunter value a, representing for the redness degree, was higher for fruits treated with CIS+NSS and CIS+BDM without AC than those with AC. Fruits treated with organic materials without AC had greater total phenolic and flavonoid compounds as well as antioxidant capacity in flesh and greater total phenolc compounds and antioxidant capacity in peel than those treated with the AC.

Suppression of Bacterial Wilt with Bacillus subtilis SKU48-2 Strain (Bacillus subtilis SKU48-2에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Bacterial populations from the rhizosphere were obtained and the efficacy of the bacterial wilt suppression, root colonizing ability and resistance to three kinds of chemical pesticides were assayed. According to these results, SKU48-2 was selected as a potential biological agent to control the bacterial wilt caused by Ralstonia solanacearum. SKU48-2 strain at $10^8CFU/ml$ inoculum was able to suppress the bacterial wilt up to 60% in greenhouse trials. Also, the resistance of SKU48-2 to chemical pesticides make possible to use in combination with chemical pesticides for the control of bacterial wilt. Three different powder formulations of SKU48-2 were developed. The shelf-life of powder formulations was effective up to 6 months of storage. Unformulated bacterial suspension could not be stored for 2 weeks, at which time cell viability was completely lost. According to 16S rDNA sequence data, the SKU48-2 stain was identified as Bacillus subtilis.

Behavior of Pesticides in Soil (토양 중 농약의 동태)

  • Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.303-307
    • /
    • 2010
  • The researches with pesticides in soil were divided several categories such as run off from soil surface, adsorption and desorption in soil, leaching through soil, degradation and decomposition studies, fates in soil, monitoring survey and development of analytical procedures and so on. In this paper it was reviewed that the research results published in Korean journals since 1996, in connection with the former review as 'Evaluation on the effects of pesticide residues to agroecosystem in Korea'.

Control Efficacy of Mixed Application of Microbial and Chemical fungicides against Powdery mildew of red-pepper (미생물 농약과 유기합성 살균제 혼용에 따른 고추 흰가루병 방제 효과)

  • Hong, Sung-Jun;Kim, Jung-Hyun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Goo, Hyung-Jin;Choi, Kwang-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • This study was conducted to reduce the using amount of chemical fungicides for the control of red-pepper powdery mildew. Effect of combined application of three microbial fungicides and six chemical fungicides for the control of red-pepper powdery mildew was examined in vitro, in pot assay and under field condition. One chemical fungicide (Azoxystrobin+Chlorothalonil) among six chemical fungicides significantly suppressed three microbial fungicides (Bacillus subtilis Y1336, Bacillus subtilis DBB1501, Bacillus subtilis QST-713) registered for the control of pepper powdery mildew in vitro. In the pot assay, two mixed application such as B. subtilis DBB1501+Trifloxystrobin, B. subtilis QST713+Trifloxystrobin among nine mixed applications of three microbial fungicides and three chemical fungicides showed the highest suppressive effect against red pepper powdery mildew. Also, suppressive effect of the mixed application of B. subtilis QST713 and Trifloxystrobin was similar to that of single application of three chemical fungicides(Myclobutanil, Trifloxystrobin, Hexaconazole). In the field test, when the microbial fungicides (B. subtilis DBB1501, B. subtilis QST713) and the chemical fungicide (Trifloxystrobin) for the control of powdery mildew of red pepper were mixed foliar sprayed four times at 7 day-intervals, the control values were in the range of 70.3% to 70.9%. On the other hand, when each of the chemical fungicide (Trifloxystrobin) was foliar sprayed four times at 7 day-intervals, the control value was 72.7%. Consequently, the mixed application of the microbial fungicides and chemical fungicides could be recommended as a one of control measures for reducing the using amount of chemical fungicides.