• Title/Summary/Keyword: 미분 문제해결

Search Result 90, Processing Time 0.023 seconds

A Study on the PI Controller of AC Servo Motor using Genetic Algorithm (유전자알고리즘을 이용한 교류서보전동기의 PI 제어기에 관한 연구)

  • Kim, Hwan;Park, Se-Seung;Choi, Youn-Ok;Cho, Geum-Bae;Kim, Pyoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.81-91
    • /
    • 2006
  • Recently, G.A studies have studied and demonstrated that artificial intelligence like G.A networks, G.A PI controller. The design techniques of PI controller using G.A with the newly proposed teaming algorithm was presented, and the designed controller with AC servo motor system. The goal of this paper is to design the AC servo motor using genetic algorithm and to control drive robot. And in this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for genetic algorithm PI controller. Our experimental results show that this approach increases overall classification accuracy rate significantly. Finally, we executed for the implementation of high performance speed control system. It is used a 16-bit DSP, IMS320LF2407, which is capable of the high speed and floating point calculation.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator (단순 라플라스 연산자를 사용한 새로운 고속 및 고성능 영상 화질 측정 척도)

  • Bae, Sung-Ho;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.157-168
    • /
    • 2016
  • In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test.

A Study on Early Age Properties of Alkali Activated Slag Mortar According to Water/Binder Ratio (물-결합재비에 따른 알칼리 활성 슬래그 모르타르의 초기 재령 특성에 관한 연구)

  • Oh, Sang-Hyuk;Kim, Dae-Wang;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • Recently, the cement industries brought very severe environment problems such as resource depletion and global warming with massive carbon dioxide during its production. The number of cases using industrial by-products such as the ground granulated blast furnace slag (GGBFS) in concrete mixtures is increasing to resolve the environmental issue. GGBFS is mainly used in the range between 20 to 50% to replace cement, but nowadays lots of researches are carried out to develop the alkali-activated slag (AAS) concrete with no cement. In this study, the early age properties of alkali activated slag (AAS) mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The experimental variables were the water-binder ratios of 0.3, 0.4, and 0.5 and NaOH as the alkali activator of 4%, 8%, and 12% by the mass of GGBFS, and compressive strength, flow, setting time, and ultrasonic pulse velocity of AAS mortars were measured and analyzed. It is found from the test results that as the normal concrete the lower W/B, the higher compressive strength. However, superplasticizer has to be used for producing high strength AAS concrete because the workability of AAS mortar are significantly lowered.

  • PDF

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Design of Digitalized SECAM Video Encoder with Modified Anti-cloche filter and SECAM Video Decoder with BPF and Error-free Square Root (개선된 Anti-cloche Filter와 BPF 그리고 오차가 없는 제곱근기를 사용한 SECAM Encoder와 Decoder의 설계)

  • Ha, Joo-Young;Kim, Joo-Hyun;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.511-516
    • /
    • 2006
  • In this raper, we propose the Sequentiel Couleur Avec Memoire or Sequential Color with Memory (SECAM) video encoder system using modified anti-cloche filters and the SECAM video decoder system using a band pass filter (BPF) and an error-free square root. The SECAM encoder requires an anti-cloche filter recommended by International Telecommunication Union-Recommendation (ITU-R) Broadcasting service Television (BT) 470. However, the design of the anti-cloche filter is difficult because the frequency response of the anti-cloche filter is very sharp around rejection-frequency area. So, we convert the filter into a hish pass filter (HPF) by shifting the rejection frequency of 4.286MHz to 0Hz frequency. The design of HPF becomes very easy, compared to that of the anti-cloche filter. The proposed decoder also uses an error-free square root, two differentiators and trigonometric functions to extract color-component information of Db and Dr accurately from frequency modulation (FM) signals in SECAM systems. Also, the BPF in decoder it used for removing color noise in chrominance and dividing CVBS into chrominance and luminance. The proposed systems are experimentally demonstrated with Altera FPGA APEX20KE EP20K1000EBC652-3 device and TV sets.

A Numerical Simulation of Three- Dimensional Nonlinear Free surface Flows (3차원 비선형 자유표면 유동의 수치해석)

  • Chang-Gu Kang;In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.38-52
    • /
    • 1991
  • In this paper, a semi-Lagrangian method is used to solve the nonlinear hydrodynamics of a three-dimensional body beneath the free surface in the time domain. The boundary value problem is solved by using the boundary integral method. The geometries of the body and the free surface are represented by the curved panels. The surfaces are discretized into the small surface elements using a bi-cubic B-spline algorithm. The boundary values of $\phi$ and $\frac{\partial{\phi}}{\partial{n}}$ are assumed to be bilinear on the subdivided surface. The singular part proportional to $\frac{1}{R}$ are subtracted off and are integrated analytically in the calculation of the induced potential by singularities. The far field flow away from the body is represented by a dipole at the origin of the coordinate system. The Runge-Kutta 4-th order algorithm is employed in the time stepping scheme. The three-dimensional form of the integral equation and the boundary conditions for the time derivative of the potential Is derived. By using these formulas, the free surface shape and the equations of motion are calculated simultaneously. The free surface shape and fille forces acting on a body oscillating sinusoidally with large amplitude are calculated and compared with published results. Nonlinear effects on a body near the free surface are investigated.

  • PDF

Finite element method adopting isoparametric formulation of the quadrilateral elements (등매개변수 사변형요소를 적용한 유한요소해석법)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.205-212
    • /
    • 2018
  • In order to overcome shortcomings of commercial analysis program for solving certain geotechnical problems, finite element method adopting isoparametric quadrilateral element was selected as a tool for analyzing soil behavior and calculating process was programmed. Two examples were considered in order to verify reliability of the developed program. One of the two examples is the case of acting isotropic confining pressure on finite element and the other is the case of acting shear stress on the sides of the finite element. Isoparametric quadrilateral element was considered as the finite element and displacements in the element can be expressed by node displacements and shape functions in the considered element. Calculating process for determining strain which is defined by derivatives using global coordinates was coded using the Jacobian and the natural coordinates. Four point Gauss rule was adopted to convert double integral which defines stiffness of the element into numerical integration. As a result of executing analysis of the finite element under isotropic confining pressure, calculated stress corresponding to four Gauss points and center of the element were equal to the confining pressure. In addition, according to the analyzed results for the element under shear stress, horizontal stresses and vertical stresses were varied with positions in the element and the magnitudes and distribution pattern of the stresses were thought to be rational.