• Title/Summary/Keyword: 미분무

Search Result 84, Processing Time 0.026 seconds

The Wavelet Series Analysis for the Fourth-order Elliptic Differential Equation (4계 타원형 미분 방정식을 위한 웨이블릿 급수해석)

  • Jo, Jun-Hyung;Woo, Kwang-Sung;Sin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.355-364
    • /
    • 2011
  • In this study, the details of WSA(wavelet series analysis) have been demonstrated to solve the 4th-order elliptic differential equation. It is clear to solve the 2nd-order elliptic differential equation with the basis function of Hat wavelet series that is used in the previous study existed in $H^1$-space. However, it is difficult to solve the 4th order differential equation with same basis function of Hat wavelet series because of insufficient differentiability and integrability. To overcome this problem, the linear equations in terms of moment and deflection have been formulated and solved sequentially that are similar to extension of Elastic Load Method and Moment Area Method in some senses. Also, the differences and common points between the proposed method and the meshless method are discussed in the procedure of WSA formulation. As we expect, it is easy to ascertain that the more terms of Hat wavelet series are used, the better numerical solutions are improved. Also the solutions obtained by WSA have been compared with the conventional FEM solutions in case of Euler beam problems with stress singularity.

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Effect of Recycled Aggregate Substitution to Zero-cement Concrete which uses Blast Furnace Slag Power (고로슬래그 미분말 사용 무 시멘트 콘크리트의 품질에 미치는 순환골재 치환율의 영향)

  • Feng, Hai-Dong;Cho, Man-Gi;Son, Ho-Jung;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.287-288
    • /
    • 2012
  • In this study, Analyzed the effect of the change in RFA and RCA substitution rate on the concrete containing BS bonding materials but no cement. The findings are as follows. First, the fresh concrete has less slump value and air contents as more RFA and RCA is used. In case of hardened concrete, as more RFA and RCA are used, the higher the compressive strength of concrete becomes. Especially, the compressive strength of concrete which used recycled aggregates only is found to be 2.2 times as high as that of concrete using natural fine and coarse aggregates only. But if the concrete is to be used as the structural concrete having the compressive strength of 13.8 MPa, the alkaline materials and some cement are required to be added.

  • PDF

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

Effect of Recycled Aggregates Powder on the Properties of Zero Cement Mortar Using the Recycled Fine Aggregates and Fly-Ash (순환잔골재와 플라이애시를 사용하는 무 시멘트 모르타르의 특성에 미치는 순환골재 미분말의 영향)

  • Park, Kyung-Taek;Son, Seok-Heon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The purpose of this study was to investigate the influence of recycled aggregates powder (RP) contents on recycled aggregates (RA) using fly-ash (FA) mortar in a condition of zero cement targeting earth filling materials, and the results can be summarized as follows. First, there was a tendency that as RP contents increased, W/B and air contents increased also. In the case of compressive strength, the strength was hardly developed at the early age, which was prior to 14 days; however, with the starting point of 14 days of age, strength of around 1.5~2.0 MPa was developed when it arrived at 28 days. At a curing temperature of $20^{\circ}C$, the more RP contents increased, the more the compressive strength increased in comparison with FA 100% at all levels except RP 100 %, showing the highest compressive strength at RP 25 %. At a curing temperature of $35^{\circ}C$, the temperature-dependence appeared to be large, as the RP contents were decreased compared to the curing temperature of $20^{\circ}C$. In addition, based on SEM analysis, this study was able to confirm that a pozzolanic reaction formed by an alkali stimulus of RA with the lapse of certain days even in 100 percent FA, causing the densification of tissues, and with RP 25%, hydrate was created the most densely by the hydration of unhydrated cement particles and pozzolanic reaction of FA.

Study on Mock-up Properties of Concrete using Blast Furnace Slag and Recycled Aggregate (고로슬래그와 재생골재를 사용한 콘크리트의 실물대 특성에 관한 연구)

  • Park, Hyun;Han, Da-Hee;Park, Moo-Young;Kim, Woo-Jae;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.789-792
    • /
    • 2008
  • Blast furnace slag doesn't have self-hydraulicity and it needs stimulants such as alkali to hydrate. Therefore using recycled aggregates erupted calcium hydroxides and blast furnace slag acquiring alkali stimulate could make a complementarily use of a recycling architectural material possible. In this study, we have discussed about characters of blast furnace slag and recycled aggregate firstly, and make recycled aggregate mortar and concrete using blast furnace slag for the experiment. The experiment is about mortar and concrete using recycled aggregate as a substitutional material of blast furnace slag. In this experiment, I replace blast furnace slag and aggregate with recycled aggregate. Conclusions through the test results analysis are as follows. And then, we added field experiment using concrete with composited materials.

  • PDF

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.

Optimization of Neuro-Fuzzy System using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템 최적화)

  • Kim, Sung-Suk;Jeon, Byung-Suk;Song, Chang-Kyu;Kim, Ju-Sik;Kim, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2073-2074
    • /
    • 2006
  • 본 논문에서는 PSO를 이용한 뉴로-퍼지 모델의 구조 및 파라미터 동정을 실시한다. 진화연산 기법의 무작위 탐색 능력과 오차 미분기반 학습에서의 수렴 특성을 가진 PSO를 이용하여 학습이 진행되는 동안 모델의 구조 및 파라미터를 주어진 학습 데이터에 적합하도록 최적화 시킨다. 또한 모델의 크기를 결정하는 규칙의 수 결정을 클러스터링 기법을 이용하여 소속함수의 수가 증가하더라도 규칙이 지수함수적으로 증가하는 문제를 해결하였다. 제안된 기법의 유용성을 시뮬레이션을 통해 보이고자 한다.

  • PDF

Comparison of linewidth enhancement factor and differential gain of DFB-LDs with various active layter structures (활성층 구조에 따른 DFB-LD의 선폭확대계수 및 미분이득 비교)

  • 박경현;조호성;장동훈;이중기;김정수;이승원;김홍만;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.86-93
    • /
    • 1995
  • Linwidth enhancement factor .alpha., linwidth, chirping and differential gain characteristics were measured and compared for each DFB-LDs containing active layers composed of bulk, MQW, and S-MQW, respectively. .alpha. of 6, 4 and 3.2 and chirping measured under 2.5Gbps modulation of 1.29nm, 0.67nm and 0.48nm were given for DFB-LDs of bulk, MQW and S-MQW active layers, respectively. And S-MQW has the largest differential gin of 2.4*10$^{-15}$ cm$^{2}$ (S-MQW) compared to the of 5.4*10$^{-16}$ cm$^{2}$(bulk) and 8.6*10$^{-16}$ cm$^{2}$(MQW). Linewidth enhancement facter .alpha. of less than 2 is expected with p-type modulation doped S-MQW DFB-LD.

  • PDF