• Title/Summary/Keyword: 미래 확률 강우량

Search Result 89, Processing Time 0.023 seconds

Short-term streamflow Prediction Using ESP Method in Gumho River Basin (ESP 기법을 적용한 금호강유역의 단기 유량예측)

  • Choi, Hyun Gu;Lee, Eul Rae;Kang, Sin Uk;Lee, Sang Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.411-411
    • /
    • 2015
  • 유량예측의 가장 주된 목적은 가뭄과 홍수와 같은 수해방지를 위해 통합수자원관리를 수행하는데 있다. 이런 유량예측을 위해 다양한 기법들로 예측이 수행되고 있으며, 예측기간과 필요 정확도에 따라 초단기, 단기, 중 장기 예측 등으로 구분할 수 있다. 유량예측에 사용되는 기법들은 기후변화 시나리오와 같이 예측된 강우자료를 이용하여 유출량을 예측하는 방법이 있으며, 통계적인 방법으로 과거자료들을 활용하여 미래의 유량을 예측하는 방법이 있다. 본 연구에서는 ESP 기법을 이용하여 금호강 유역의 월 단위(30일) 유량을 예측하고자 한다. 앙상블 유량예측기법(ESP; Ensemble Streamflow Prediction)이란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열 앙상블을 강우-유출모형에 입력하여 유출량을 앙상블로 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거 강우 관측기록, 미래 강우예측에 대한 정보를 조합하여 그에 따른 유출 앙상블을 생산해내게 된다. 월 유량을 예측하기 위해서 금호강 유역의 1988년에서 2014년까지 27년간 대구, 영천, 포항 관측소의 기상자료를 수집하였으며, 금호강 표준유역에 해당하는 19개 유역으로 분할하여 모의에 이용하였다. 금호강 유역에 티센망을 적용하여 각 표준유역별로 강우량을 조합하여 2013년까지 모의에 적용하였으며, 이는 과거자료로 사용하였다. 유량예측에 사용되는 강우자료를 생성하기 위해서 26년간 일강우를 이용하였다. 예를 들어 2014년 12월을 예측한다면 11월까지 관측된 유역초기 조건을 가지는 수문모형의 12월 기상입력자료로써 현재 유역에서 발생 가능성이 있는 동일 유역의 과거 1988년부터 2013년까지의 12월 기상자료들을 사용하는 방법이다. 1988년부터 2013년까지 26개 12월 기상자료를 사용하므로 유량예측결과 또한 26개가 주워진다. 계산된 26개의 유량앙상블이 적용된 유역에서 12월에 발생 가능한 유출량의 모음이 된다. 시나리오결과를 수자원관리에 활용하기 위해서 초과확률로 분석하였으며, 이런 분석의 결과는 향후 가뭄과 홍수 같은 수해방지를 위해 수공구조물의 운영에도 활용할 수 있을 것으로 판단된다.

  • PDF

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

Regional Frequency Analysis for Rainfall Under Climate Change (기후변화를 고려한 일강우량의 지역빈도해석)

  • Song, Chang Woo;Kim, Yon Soo;Kang, Na Rae;Lee, Dong Ryul;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.125-137
    • /
    • 2013
  • Global warming and climate change have influence on abnormal weather pattern and the rainstorm has a localized and intensive tendency in Korea. IPCC(2007) also reported the rainstorm and typhoon will be more and more stronger due to temperature increase during the 21st century. Flood Estimation Handbook(Institute of Hydrology, 1999) published in United Kingdom, in the case that the data period is shorter than return period, recommends the regional frequency analysis rather than point frequency analysis. This study uses Regional Climate Model(RCM) of Korea Meteorological Administration(KMA) for obtaining the rainfall and for performing the regional frequency analysis. We used the rainfall data from 58 stations managed by KMA and used L-moment algorithm suggested by Hosking and wallis(1993) for the regional frequency analysis considering the climate change. As the results, in most stations, the rainfall amounts in frequencies have an increasing tendency except for some stations. According to the A1B scenario, design rainfall is increased by 7~10% compared with the reference period(1970-2010).

Stochastic disaggregation of daily rainfall based on K-Nearest neighbor resampling method (K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해에 대한 연구)

  • Park, HeeSeong;Chung, GunHui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.283-291
    • /
    • 2016
  • As the infrastructures and populations are the condensed in the mega city, urban flood management becomes very important due to the severe loss of lives and properties. For the more accurate calculation of runoff from the urban catchment, hourly or even minute rainfall data have been utilized. However, the time steps of the measured or forecasted data under climate change scenarios are longer than hourly, which causes the difficulty on the application. In this study, daily rainfall data was disaggregated into hourly using the stochastic method. Based on the historical hourly precipitation data, Gram Schmidt orthonormalization process and K-Nearest Neighbor Resampling (KNNR) method were applied to disaggregate daily precipitation into hourly. This method was originally developed to disaggregate yearly runoff data into monthly. Precipitation data has smaller probability density than runoff data, therefore, rainfall patterns considering the previous and next days were proposed as 7 different types. Disaggregated rainfall was resampled from the only same rainfall patterns to improve applicability. The proposed method was applied rainfall data observed at Seoul weather station where has 52 years hourly rainfall data and the disaggregated hourly data were compared to the measured data. The proposed method might be applied to disaggregate the climate change scenarios.

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Application Analysis of Short-term Rainfall Forecasting Model according to Bias Correlation in Rainfall Ensemble Data (강우앙상블자료 편의보정에 따른 단기강우예측모델의 적용성 분석)

  • Lee, Sanghyup;Seong, Yeon-Jeong;Bastola, Shiksha;Choo, InnKyo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.119-119
    • /
    • 2019
  • 최근 기후변화와 이상기후의 영향으로 국지성 호우 및 가뭄, 홍수, 태풍 등 재해 발생 규모가 커지고 그 빈도 또한 많아지고 있다. 이러한 자연재해 및 이상현상에 대한 피해를 예방하고 빠르게 대처하기 위해서는 정확한 강우량 추정 및 강우의 시간적 예측이 필요하다. 이러한 강우의 불확실성을 해결하기 위해서 기상청 등에서는 단일 수치예보가 가지는 결정론적인 예측의 한계를 보완한 초기조건, 물리과정, 경계조건 등이 다른 여러 개의 모델을 수행하여, 확률적으로 미래를 예측하는 앙상블 예측 시스템을 예보기술에 응용하고 있으며 기존 수치모델의 정보와 예보 불확실성에 대한 정보를 동시에 제공하고 있다. 그러나 다양한 자연조건에 대한 불완전한 물리적 이해와 연산 능력 등의 한계로 높은 불확실성이 내포되어 있으므로 불확실성을 최소화하기 위한 편의보정이 수행될 필요가 있다. 강우분석의 적용 이전에 해당 자료의 타당성과 신뢰도의 분석이 필요하다. 본 연구에서는 LENS(Local ENsemble prediction System) 예측값과 시강우 관측값을 단기예측모델에 맞추어 3시간 누적하여 비교하였다. 비교 기간은 호우가 집중되는 2016년 10월로 선정하였으며 대상지역은 울산중구로 선정하였다. LENS를 대상 지역의 관측소 지점값과 행정구역 면적값을 따로 추출한 후, 불확실성을 최소화하기 위해 활용되고 있는 CF 기법과 QM 기법을 이용하여 LENS 모델을 재가공하고 이에 따른 편의보정 기법에 따른 LENS 모델을 과거의 실제강우 관측값과의 비교분석을 이용해 적용성을 검토 및 평가하였다.

  • PDF

Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution (기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석)

  • Kim, Byung-Sik;Lee, Jung-Ki;Kim, Hung-Soo;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.499-514
    • /
    • 2011
  • An underlying assumption of traditional hydrologic frequency analysis is that climate, and hence the frequency of hydrologic events, is stationary, or unchanging over time. Under stationary conditions, the distribution of the variable of interest is invariant to temporal translation. Water resources infrastructure planning and design, such as dams, levees, canals, bridges, and culverts, relies on an understanding of past conditions and projection of future conditions. But, Water managers have always known our world is inherently non-stationary, and they routinely deal with this in management and planning. The aim of this paper is to give a brief introduction to non-stationary extreme value analysis methods. In this paper, a non-stationary hydrologic frequency analysis approach is introduced in order to determine probability rainfall consider changing climate. The non-stationary statistical approach is based on the conditional Generalized Extreme Value(GEV) distribution and Maximum Likelihood parameter estimation. This method are applied to the annual maximum 24 hours-rainfall. The results show that the non-stationary GEV approach is suitable for determining probability rainfall for changing climate, sucha sa trend, Moreover, Non-stationary frequency analyzed using SOI(Southern Oscillation Index) of ENSO(El Nino Southern Oscillation).

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.