• Title/Summary/Keyword: 미급수지역 가뭄 전망

Search Result 2, Processing Time 0.015 seconds

Development of groundwater level monitoring and forecasting technique for drought early warning (가뭄 예·경보를 위한 지하수위 모니터링 및 예측기법 개발)

  • Lee, Jeongju;Kim, Taeho;Chun, Genil;Kim, Hyeonsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.13-13
    • /
    • 2020
  • '20년 3월 현재 전국 3,502개 읍면동 중 73개 읍면동이 지하수를 상수원으로 급수 중이며, 48개 산업단지에서 지하수를 주 수원으로 사용 중이다. 또한 급수 소외지역의 물 공급을 위해 주로 사용되는 소규모수도시설 14,811개 중 12,073개(81.5%)는 지하수를 이용하고 있으며, 그 위치는 전국에 산재해 있다. 이처럼 지하수는 댐, 저수지 및 하천과 더불어 생·공용수의 중요한 수원이라 할 수 있다. 본 연구에서는 급수 소외지역의 주요 수원인 지하수위 현황을 이용한 가뭄 모니터링 및 전망 기법을 개발하고자 하였다. 국가 지하수관측망 중 10년 이상 장기 관측 자료를 보유한 253개 관측소의 일단위 관측자료를 기반으로, 과거 관측수위 분포를 핵밀도함수로 추정하고 Quantile Function을 이용해 현재 수위의 높고 낮은 정도를 Percentile 값으로 산정하였다. 관측소별 지하수위 Percentile은 티센망을 이용해 167개 시군별로 공간평균하고 Percentile의 범위에 따른 가뭄등급을 설정하여 지하수 가뭄 정도를 모니터링 할 수 있는 기법을 제시하였다. 또한 지하수 가뭄을 전망하기 위해 강수와 지하수위의 거시적인 응답특성을 이용하였다. 관측소별로 추정된 핵밀도함수의 누적확률을 표준정규분포의 Quantile로 변환하여 표준지하수지수I(Standardized Groundwater level Index, SGI)를 산정하고, 시군별로 공간을 일치시킨 1~12개월 지속기간별 표준강수지수(Standardized Precipitation Index, SPI)와의 상관관계를 이용해 NARX(nonlinear autoregressive exogenous) 인공신경망 예측모형을 구축하였다. 이를 통해 기상청 정량전망 강수량을 이용해 전국의 1~3개월 후 지하수 가뭄을 빠르게 전망할 수 있는 체계를 구축하고, 생·공용수 분야 국가 가뭄 예·경보의 미급수지역 가뭄현황 및 전망에 활용중이다.

  • PDF

Development of groundwater level monitoring and forecasting technique for drought analysis (II) - Groundwater drought forecasting Using SPI, SGI and ANN (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(II) - 표준강수지수, 표준지하수지수 및 인공신경망을 이용한 지하수 가뭄 예측)

  • Lee, Jeongju;Kang, Shinuk;Kim, Taeho;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1021-1029
    • /
    • 2018
  • A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.