• Title/Summary/Keyword: 미굴량

Search Result 4, Processing Time 0.016 seconds

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

Development of Cross Section Management System in Tunnel using Terrestrial Laser Scanning Data (지상 레이저 스캐닝 자료를 이용한 터널단면관리시스템 개발)

  • Roh, Tae-Ho;Kim, Jin-Soo;Lee, Young-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.90-104
    • /
    • 2008
  • Laser scanning technology with high positional accuracy and high density will be widely applied to vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. This study taps into the strengths of a terrestrial laser scanning technique to develop a tunnel cross section management system that can be practically employed for determining the cross section of tunnels more promptly and accurately. Three dimensional data with high density were obtained in a prompt and accurate manner using a terrestrial laser scanner. Data processing was then conducted to promptly determine arbitrary cross sections at 0.1meter, 0.5meter and 1.0meter intervals. A laser scanning technique was also used to quickly and accurately calculate the overbreak and underbreak of both each cross section and the entire tunnel section. As the developed system utilizes vast amounts of data, it was possible to promptly determine the shape of arbitrary cross section and to calculate the overbreak and underbreak more accurately with higher area precision. It is expected, therefore, that the system will not only enable more efficient and cost effective tunnel drilling management and monitoring but also will provide a basis for future construction and management of tunnel cross section.

  • PDF

Tunnel Reverse Engineering Using Terrestrial LiDAR (지상LiDAR를 이용한 터널의 Reverse Engineering)

  • Cho, Hyung Sig;Sohn, Hong Gyoo;Kim, Jong Suk;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.931-936
    • /
    • 2008
  • Surveying by using terrestrial LiDAR(Light Detection And Ranging) is more rapid than by using total station which enables tunnel section profile surveying to be done in suitable time and minimize centerline error, occurrence of overcut and undercut. Therefore, utilization of terrestrial LiDAR has increased more and more in section profile survey and measurement field Moreover, studies of terrestrial LiDAR for accurate and efficient utilization is now ongoing vigorously. Average end area formula, which was generally used to calculate overcut and undercut, was compared with existing methods such as total station survey and photogrammetry. However, there are no criteria of spacing distance for calculating overcut and undercut through terrestrial LiDAR surveying which can acquire 3D information of whole tunnel. This research performed reverse engineering to decide optimal spacing distance when surveying tunnel section profile by comparing whole tunnel volume and tunnel volume in difference spacing distance. This result was utilized to produce CAD drawing for the test tunnel site where there is no design drawings. In addition to this, efficiency of LiDAR and accuracy of CAD drawing was compared with targetless total station surveying of tunnel section profile. Finally, error analysis of target coordinate's accuracy and incidence angle was done in order to verify the accuracy of terrestrial LiDAR technology.

The Efficiency Evaluation of One Person Non-Prism Surveying System for Tunnel Measurement (터널계측을 위한 1인 무프리즘 측량시스템의 효율성 평가)

  • Park, Kyeong-Sik;Hahm, Chang-Hahk;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2007
  • The tunnel measurement data such as deficiency quantity, outbreak quantity, inner displacement and crown settlement are very important elements in tunnel sites under construction and obtained mostly by displacement gauge and total station. However, it is difficult and dangerous to install targets or measurement equipments on the points in tunnel construction site and also we need several persons to work in the tunnel. Non-prism total station with remote control system which is developed recently has various efficient functions for tunnel measurement. Therefore, for efficient tunnel measurement, this study suggested one person surveying system which consisted of non-prism total station and notebook PC to control total station remotely, and we evaluated the suggested tunnel measurement system. In this study, the tunnel site under construction was chosen as the test field and tunnel surveying was done by existing surveying method and suggested method separately. As result of the test, we analyzed processing time and accuracy to demonstrate the superiority of suggested one person non-prism surveying system.

  • PDF