• Title/Summary/Keyword: 미국지질조사소

Search Result 13, Processing Time 0.022 seconds

Analysis of germanium in rock and sediment by ICP/MS after ammonium bifluoride(NH4HF2) digestion (이플루오린화 암모늄 시료분해 및 ICP/MS에 의한 암석 및 퇴적물 중 게르마늄 분석)

  • Eum, Chul Hun;Choi, Won Myung
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.375-380
    • /
    • 2013
  • Ammonium biflouride ($NH_4HF_2$) digestion was studied for germanium analysis in rock and sediment by inductively coupled plasma mass spectrometry (ICP/MS). QLO-1 and SDO-1 are used for reference materials from USGS. Sediment, basalt and ball clay for GeoPT were chosen as real samples. The loss of germanium in open vessel digestion was well known which can be caused by easy transformation to volatile compounds. But ammonium bifluoride digestion could suppress loss of germanium in open vessel digestion. Germanium recovery was not influenced by hydrogen peroxide with ammonium bifluoride digestion. Furthermore, the new method was simple and rapid in germanium analysis by ICP/MS. MDL(method detection limit) was 0.015 ${\mu}g/g$ and germanium recovery was 106~128%.

Volatile Organic Compounds contamination in some urban runoff and groundwater samples in Seoul City (서울시 도로변 빗물과 지하수의 VOCs오염)

  • 이평구;박성원;전치완;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.73-91
    • /
    • 2001
  • compounds (VOCs) were selected for assessment of VOCs contamination in some urban runoff and groundwater samples in Seoul. They included 3 aromatic hydrocarbons, 13 alkyl benzenes, 1 ether, 26 halogenated alkanes, 10 halogenated alkenes, and 9 halogenated aromatics. The levels of VOCs in urban runoff and groundwater were measured for samples collected in March 2000, June 2000 and November 2000 in Seoul City. A total of 78 samples (44 run-off water, 27 groundwater, and 7 samples from 4 urban wastewater treatment plants in Seoul) were collected and analysed by GC-MS with purge and trap. After examination of the runoff, it was concluded that alkyl benzenes and aromatic hydrocarbons were organic compounds which were significantly impacted by traffic flows in Seoul. Of 62 VOCs, only 11 VOCs were not detected in runoff samples, while 14 VOCs were detected in 27 groundwater samples. The toluene content in the runoff was extremely variable from 0.1ppb to 29,310ppb, depending on the different sampling sites. The concentrations of xylene ranged between 0.07ppb and 2970ppb in the runoff. The concentrations ranged from 0.05ppb to 33.0ppb for benzene, 0.05ppb to 960ppb for ethylbenzene, 0.08ppb to 20ppb for trichloromethane (chloroform) , 0.03ppb to 4.30ppb for trichloroethylene(TCE) and 0.1ppb to 50ppb for 1,1,2-trichloroethane. From the preliminary study of groundwater from some wells in Seoul, the most frequently detected VOCs are djchlorornethane(methylene chloride), trichloromethane(chloroform) and toluene. Most of aromatic hydrocarbons, alkyl benzenes and other solvents generally lower than detection limits.

  • PDF

Preliminary Study for Tidal Flat Detection in Yeongjong-do according to Tide Level using Landsat Images (Landsat 위성을 이용한 조위에 따른 영종도 갯벌의 면적 탐지에 관한 선행 연구)

  • Lee, Seulki;Kim, Gyuyeon;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • Yeongjong-do is seventh largest island in the west coast of Korea which is 4.8 km away in the direction of south-west from Incheon. The mudflat area around the Yeongjong-do has variable dimension according to tide level. In addition, Yeongjong-do is important area with high environmental value as wintering sites for migratory birds. The mudflat of Yeongjong-do is also meaningful region because it is used as place of education and tourist attraction. But, there are increasing concerns about preservation of mudflat area caused by artificial development such as land reclamation project and Incheon airport construction. In this paper, mudflat area was detected using Landsat 7 ETM+ images that United States Geological Survey (USGS) is providing the data in 16 days period. The false color composite was made from band 7, 5, and 3 that could dividing boundary between water and land for the purpose of appearance of boundary line in mudflat region. This area was calculated using results of classification based on false color composite images and was digitized through repetitive algorithm during research of period. Therefore, the change of northeastern area in Yeongjong-do was detected according to tide level during 16 years from 2000 to 2015 on the basis of providing period at tide station. This paper will expect as indicator for range of area in same tide level prior to the start of the research for preservation of mudflat. It will be also scientific grounds about change of mudflat area caused by artificial development.