• Title/Summary/Keyword: 물흡수선량 교정계수

Search Result 2, Processing Time 0.015 seconds

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.