• Title/Summary/Keyword: 물표 영역 검출

Search Result 3, Processing Time 0.015 seconds

Object Detection Algorithm in Sea Environment Based on Frequency Domain (주파수 도메인에 기반한 해양 물표 검출 알고리즘)

  • Park, Ki-Tae;Jeong, Jong-Myeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this paper, a new method for detecting various objects that can be risks to safety navigation in sea environment is proposed. By analysing Infrared(IR) images obtained from various sea environments, we could find out that object regions include both horizontal and vertical direction edges while background regions of sea surface mainly include vertical direction edges. Therefore, we present an approach to detecting object regions considering horizontal and vertical edges. To this end, in the first step, image enhancement is performed by suppressing noises such as sea glint and complex clutters using a statistical filter. In the second step, a horizontal edge map and a vertical edge map are generated by 1-D Discrete Cosine Transform technique. Then, a combined map integrating the horizontal and the vertical edge maps is generated. In the third step, candidate object regions are detected by a adaptive thresholding method. Finally, exact object regions are extracted by eliminating background and clutter regions based on morphological operation.

A Study on the Development of the Position Detection System of Small Vessels for Collision Avoidance (충돌 회피를 위한 소형 선박의 위치 검출 시스템 개발에 관한 연구)

  • Le, Dang-Khanh;Nam, Teak-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2014
  • In this paper, a developed device for detecting target's location and avoiding collision is proposed. Velocity and acceleration model of target are derived to estimate target's information, i.e. position, velocity and acceleration considering process and measurement noise. Kalman filtering method applied to the estimation process and its results was confirmed by simulation. The distance measurements system using laser sensor for moving target system is also developed to confirm the effectiveness of the proposed scheme. Experiments to get information of moving target with velocity and acceleration model was executed. The data with filtering and without filtering was compared by experiments. Discontinuous measured data was changed to smooth and continuous data by Kalman filtering. It is confirmed that desired data was obtained by applying proposed scheme. UI for measuring and monitoring the target data is developed and visual and auditory alarm function is attached on the system Finally, position estimation system of moving target with good performance is achieved by low price equipments.

Object Detection Method in Sea Environment Using Fast Region Merge Algorithm (해양환경에서 고속 영역 병합 알고리즘을 이용한 물표 탐지 기법)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.610-616
    • /
    • 2012
  • In this paper, we present a method to detect an object such as ship, rock and buoy from sea IR image for the safety navigation. To this end, we do the image smoothing first and the apply watershed algorithm to segment image into subregions. Since watershed algorithm almost always produces over-segmented regions, it requires posterior merging process to get meaningful segmented regions. We propose an efficient merger algorithm that requires only two times of direct access to the pixels regardless of the number of regions. Also by analyzing IR image obtained from sea environments, we could find out that most horizontal edge come out from object regions. For the given input IR image we extract horizontal edge and eliminate isolated edges produced from background and noises by adopting morphological operator. Among the segmented regions, the regions that have horizontal edges are extracted as final results. Experimental results show the adequacy of the proposed method.