• Title/Summary/Keyword: 물체 크기

Search Result 516, Processing Time 0.025 seconds

A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature (새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법)

  • Hong, Yong-Hee;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2010
  • This paper proposes a face detection method using Free Rectangle feature which possesses a quick execution time and a high efficiency. The proposed mask of Free Rectangle feature is composed of two separable rectangles with the same area. In order to increase the feature diversity, Haar-like feature generally uses a complex mask composed of two or more rectangles. But the proposed feature mask can get a lot of very efficient features according to any position and scale of two rectangles on the feature window. Moreover, the Free Rectangle feature can largely reduce the execution time since it is defined as the only difference of the sum of pixels of two rectangles irrespective of the mask type. Since it yields a quick detection speed and good detection rates on real world images, the proposed face detection method based on Adaboost algorithm is easily applied to detect another object by changing the training dataset.

Evaluation of Accuracy and Optimization of Digital Image Analysis Technique for Measuring Deformation of Soils (흙의 변형 측정을 위한 디지털 이미지 해석 기법의 최적화 및 정확도 평가)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.5-16
    • /
    • 2011
  • Digital image analysis techniques have been developed and utilized in the field of solid mechanics and fluid mechanics to measure the deformation and velocity of a target object. The deformation measurement systems based on Particle Image Velocimetry (PIV) and Digital Image Correlation (DIC) have been attempted in geotechnical testings (e.g., physical model tests) for observing the deformation of soils. The digital image analysis is influenced by image pattern of test materials, resolution of the used digital camera, target area, image analysis techniques, and analysis conditions. Therefore, optimal analysis conditions should be determined to obtain high quality results on soil deformations. In the present study, various influence factors on the digital image analysis were described and summarized. The optimizing procedure for high accurate results was then proposed. Finally, the applicability of the developed procedure was examined.

Development of Automatic Inspection System for ALC Block Using Distortion Correction Technique (왜곡 보정 기법을 이용한 ALC 블럭의 자동 검사 시스템 개발)

  • Han, Kwang-Hee;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The lens distortion in the machine vision system is inevitable phenomenon. Distortion is getting worse, due to the selection of lens in the trend of reducing prices and size of the system. In this trend, the distortion correction becomes more important. But, the traditional correction methods has problems, such as complexity and requiring more operations. Effective distorted digital image correction is the precondition of target detection and recognition based on vision inspection. To overcome the disadvantage of traditional distortion correction algorithms, such as complex modeling, massive computation and marginal information loss, an image distortion correction algorithm based on photogrammetry method is proposed in this paper. In our method, we use the lattice image as the measurement target. Through the experimental results, we could find that we can reduce the processing time by 4ms. And also the inspection failure rate of our method was reduced by 2.3% than human-eyes inspection method.

Comparison of Compression Schemes for Real-Time 3D Texture Mapping (실시간 3차원 텍스춰 매핑을 위한 압축기법의 성능 비교)

  • Park, Gi-Ju;Im, In-Seong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.4
    • /
    • pp.35-42
    • /
    • 2000
  • 3D texture mapping generates highly natural visual effects in which objects appear carved from lumps of materials rather than laminated with thin sheets as in 2D texture mapping. Storing 3D texture images in a table for fast mapping computations, instead of evaluating procedures on the fly, however, has been considered impractical due to the extremely high memory requirement. Recently, a practical real-time 3D texture mapping technique was proposed in [11], where they attempt to resolve the potential texture memory problem by compressing 3D textures using a wavelet-based encoding method. In this paper, we consider two other encoding schemes that could also be applied to the compression-based 3D texture mapping. In particular, we extend the vector quantization and FXT1 for 3D texture compression, and compare their performance with the wavelet-based encoding scheme.

  • PDF

A 2D FLIR Image-based 3D Target Recognition using Degree of Reliability of Contour (윤곽선의 신뢰도를 고려한 2차원 적외선 영상 기반의 3차원 목표물 인식 기법)

  • 이훈철;이청우;배성준;이광연;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2359-2368
    • /
    • 1999
  • In this paper we propose a 2D FLIR image-based 3D target recognition system which performs group-to-ground vehicle recognition using the target contour and its degree of reliability extracted from FLIR image. First we extract target from background in FLIR image. Then we define contour points of the extracted target which have high edge gradient magnitude and brightness value as reliable contour point and make reliable contour by grouping all reliable contour points. After that we extract corresponding reliable contours from model contour image and perform comparison between scene and model features which are calculated by DST(discrete sine transform) of reliable contours. Experiment shows that the proposed algorithm work well and even in case of imperfect target extraction it showed better performance then conventional 2D contour-based matching algorithms.

  • PDF

A new scheme for finding the biggest rectangle that doesn't have any obstacle (장애물을 제외한 가장 큰 공간을 찾는 기법)

  • Hwang, Jung-Hwan;Jeon, Heung-Seok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.75-80
    • /
    • 2011
  • Recently, many cleaning robots have been made with various algorithms for efficient cleaning. One of them is a DmaxCoverage algorithm which efficiently clean for the situation when the robot has a time limit. This algorithm uses Rectangle Tiling method for finding the biggest rectangle that doesn't have any obstacle. When the robot uses grid map, Rectangle Tiling method can find the optimal value. Rectangle Tiling method is to find all of the rectangles in the grid map. But when the grid map is big, it has a problem that spends a lot of times because of the large numbers of rectangles. In this paper, we propose Four Direction Rectangle Scanning(FDRS) method that has similar accuracy but faster than Rectangle Tiling method. FDRS method is not to find all of the rectangle, but to search the obstacle's all directions. We will show the FDRS method's performance by comparing of FDRS and Rectangle Tiling methods.

Intuitive Manipulation of Deformable Cloth Object Based on Augmented Reality for Mobile Game (모바일 게임을 위한 증강현실 기반 직관적 변형 직물객체 조작)

  • Kim, Sang-Joon;Hong, Min;Choi, Yoo-Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • In recent, mobile augmented reality game which has been attracting high attention is considered to be an good approach to increase immersion. In conventional augmented reality-based games that recognize target objects using a mobile camera and show the matching game characters, touch-based interaction is mainly used. In this paper, we propose an intuitive interaction method which manipulates a deformable game object by moving a target image of augmented reality in order to enhacne the immersion of the game. In the proposed method, the deformable object is intuitively manipulated by calculating the distance and direction between the target images and by adjusting the external force applied to the deformable object using them. In this paper, we focus on the cloth deformable object which is widely used for natural object animation in game contents and implement natural cloth simulation interacting with game objects represented by wind and rigid objects. In the experiments, we compare the previous commercial cloth model with the proposed method and show the proposed method can represent cloth animation more realistically.

Gender Classification System Based on Deep Learning in Low Power Embedded Board (저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현)

  • Jeong, Hyunwook;Kim, Dae Hoe;Baddar, Wisam J.;Ro, Yong Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • While IoT (Internet of Things) industry has been spreading, it becomes very important for object to recognize user's information by itself without any control. Above all, gender (male, female) is dominant factor to analyze user's information on account of social and biological difference between male and female. However since each gender consists of diverse face feature, face-based gender classification research is still in challengeable research field. Also to apply gender classification system to IoT, size of device should be reduced and device should be operated with low power. Consequently, To port the function that can classify gender in real-world, this paper contributes two things. The first one is new gender classification algorithm based on deep learning and the second one is to implement real-time gender classification system in embedded board operated by low power. In our experiment, we measured frame per second for gender classification processing and power consumption in PC circumstance and mobile GPU circumstance. Therefore we verified that gender classification system based on deep learning works well with low power in mobile GPU circumstance comparing to in PC circumstance.

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Effects of Growth Regulators on Plant Regeneration in Shoot-Tip-Derived Embryogenic Callus Cultures of Sweet Potato (Ipomoea batatas) (고구마 경단 유래 배발생 캘러스로부터 식물체 재분화에 미치는 생장조절제의 영향)

  • ;Shozo FUJIOKA
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.281-286
    • /
    • 1994
  • The hormonal regulation of organ differentiation was investigated in the tissue culture of sweet potato. Embryogenic callus was induced from shoot tips cultured on MS medium supplemented with 1 mg/L 2,4-D. When embryogenic callus was transferred to medium containing 0.1 mg/L GA$_4$, it proliferation was stimulated. The callus gave rise to plantlets when cultured on medium containing 0.1 mg/L BA. Addition of 0.1 mg/L jasmonic acid or 0.01 mg/L brassinolide to medium was effective for the development of healthy normal plantlets.

  • PDF