본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.
영상기반의 3자원 복원(reconstruction)에 대한 연구가 컴퓨터 성능의 발전과 다양한 영상기반의 복원 알고리즘의 연구로 인해 최근 좋은 결과를 보이고 있으나, 이는 얼굴영역과 같은 목적이 되는 영역이 각 입력영상으로부터 미리 정확하게 추출되어 있다고 가정하기 때문이다. 일반적으로 목적이 되는 영역을 추출하기 위해 차영상이 많이 이용되고 있지만 차영상은 잡음과 구멍(hole)과 같은 오 추출된 영역이 발생하기 때문에 목적이 되는 영역을 3차원으로 복원을 할 때 심각한 오류를 초래할 수 있다. 전경물체(목적이 되는 영역)을 정확하게 추출하기 위해 최근 그래프 컷(graph cut)을 이용한 방법이 다양하게 시도되고 있다. 그래프 컷은 데이터 항(data term)과 스무드 항(smooth term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로 여러 공학적 문제에서 좋은 결과를 보이고 있지만, 에너지 함수의 데이터 항을 설정할 때 필요한 사전정보를 자동으로 얻기가 어렵다. 스테레오 비전의 깊이 정보가 최근 전경 물체 추출을 위한 사전정보로 많이 이용되고 있고 그들의 실험환경에서는 좋은 결과를 보이지만, 3차원 얼굴 복원에서 얼굴의 대부분이 동질의 영역을 가지고 있기 때문에 깊이 정보를 구하기 어려워 정확한 사전정보를 구하기가 어렵다. 본 논문에서는 3차원 얼굴 복원을 효과적으로 하기 위한 그래프 컷 기반의 전경 물체 추출 방법을 제안한다. 에너지 함수의 데이터 항을 설정하기 위해 전경 물체에 대한 사전정보를 추출해야 하며, 이를 위해 차영상을 이용하여 대략적인 전경 물체 추출하고, 사전정보에 대한 오류를 줄이기 위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.
본 연구에서는 고정된 카메라로부터 입력되는 영상열에서 이동 물체를 신뢰성있게 분리하기 위해 형태 정보를 이용하여 이동물체를 분리하는 보안 시스템을 설계하고 구현한다. 영역 분리의 핵심은 배경으로부터 주위 잡음 영역과 무관하게 이동 물체 영역을 분리하는 기술이라고 볼 수 있다. 제안된 방법은 초기 이동 물체가 존재하지 않는 영상을 참고 영상(reference image)으로 하여 입력 영상(input image)과의 차영상(difference image)을 구하고, 차영상의 히스토그램(histogram)에서 배경잡음 모델링(modeling)을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 국부 최대값들(local maxima)을 이용해 후보 초기 영역을 선정한 후, 이 영역을 기반으로 영역의 형태정보를 이용하여 영역을 선별적으로 확장하면서 결합하는 방법을 사용하였다. 또한, 차영상 기법에서 중요시되는 참고영상 갱신방법의 효율적인 적용방안도 제시하였다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역 분리 방법보다 주위 잡음과 무관하게 이동 물체를 분리할 수 있음을 확인할 수 있었다.
본 논문에서는 구조광 3차원 시스템을 위하여 영상처리를 하여 3차원 정밀도를 높이는 방법을 제안한다. 구조광 기반의 3차원 시스템은 투사된 패턴을 특징점으로 하기 때문에 프로젝터와 카메라 사이에 정확한 대응점을 획득해야만 3차원 복원 신뢰성을 높일 수 있다. 그러나 환경에 따라 정확한 대응점 획득이 어려운 점이 많다. 실제 환경에서 물체들은 물체의 재질과 물체 표면의 색상 등의 이유로 서로 다른 반사율을 가지고 있어 여러 물체들이 혼재 되어 있는 환경에서 각각 물체에 투사된 패턴을 정확히 구별하는 일은 어려운 일이다. 따라서 패턴을 획득한 2차원 영상을 개선하여 패턴을 정확히 구별하여 프로젝터와 카메라 간의 화소 대응점의 정확도를 높여야만 3차원 복원 데이터의 신뢰도를 높일 수 있다. 따라서 본 논문에서는 노이즈 제거 및 다양한 영상처리를 통하여 2차원 영상들에서 패턴을 정확히 구분하도록 하여 화소 대응점의 정확도를 높임으로써 최종적으로 3차원 정밀도를 개선할 수 있는 방법을 제공한다.
단일 로봇을 이용한 물체의 운반은 제어대상이 하나이기 때문에 제어가 쉽다는 장점이 있다. 그러나 로봇의 크기에 비해 물체의 길이가 길어지거나 부피가 커지고 무게가 증가할 경우, 물체의 균형을 유지하기가 힘들고 로봇의 속도가 감소하는 등의 문제가 발생한다. 본 연구에서는 페트리넷의 그래픽적인 모델링 방법을 이용하여 전체 작업을 모델링하여 로봇의 작업 상태를 쉽게 파악할 수 있도록 하였으며 명령체계상에서 발생할 수 있는 오류를 사전에 제거하려 하였다. 또한 시스템을 분산형 구조로 설계하여 시스템을 관리하는 별도의 시스템을 설정하지 않는 대신 퍼지 제어기를 이용하여 두 로봇의 협조 작업을 통해 물체를 운반할 경우 일어날 수 있는 애매한 상황에 대한 문제를 수학적인 모델링이 필요하지 않은 퍼지 제어기의 특성을 이용해 해결하고자 한다.
본 논문에서는 컴퓨터 집적영상(integral imaging(II))에서 분산 추정을 이용하여 심하게 은폐된 물체의 복원 시 은폐물(occluding object)의 블러링 효과를 제거하는 방법을 제안하였다. 하나의 요소영상(elemental image) 군으로부터 은폐 효과를 제거하여 복원된 영상의 선명도를 향상시키는 정보를 추출하는 방법을 분석하였다. 이를 실행하기 위해 픽업되는 요소영상들이 높은 해상도, 낮은 초점오차(focus error), 큰 깊이감을 가질 필요가 있다. 요소 영상을 픽업할 때 디지털 컴퓨터를 이용한 synthetic aperture integral imaging(SAII)이 채택되었다. 컴퓨터(Computational) II에서는 복원 면의 위치에 따라 복원되는 영상의 촛첨이 맺히는 영역이 달라진다. 심하게 은폐된 물체 영상의 복원은 은폐 물체의 블러링(bluring) 효과가 복원 면에 전체적으로 크게 나타나기 때문에 선명한 복원을 할 수가 없다. 이러한 은폐물의 블러링 효과가 제거된 복원 영상을 얻기 위해 분산 추정이라는 통계적인 방법이 채택되었다.
본 논문은 낮은 피사계 심도 영상(low depth-of-field image)에 대해 사용자의 도움 없이 포커스 된 관심 영역을 고속으로 추출하는 효율적인 방법을 제안한다. 우리는 입력 영상에 존재하는 고주파 성분을 HOS(higher order statistics) 계산을 함으로써 영상의 포커스 된 영역을 찾아내는 중요한 지표로 활용한다. 본 논문에서 제안하는 방법은 크게 4가지 단계로 구분할 수 있다. 첫 번째 단계에서는 기존 연구[1] 방법과 동일하게 모든 화소에 관해 HOS 지도를 계산하고 블록화한다. 두 번째 단계에서는 블록화 된 HOS를 이용하여 포커스 된 물체가 존재하는 후보 관심 영역을 대략적으로 구한다. 이후 관심 영역 내부에 존재하는 구멍(hole)을 제거하기 위해 구멍(hole) 추적 및 제거 연산을 수행한다. 마지막으로 최종 관심 후보 영역에서 배경 부분의 화소만 제거하여 포커스 된 관심 물체만을 섬세하게 추출한다. 제안하는 방법은 기존 방법[1]에 비해 정지 영상에서 고속으로 관심 영역을 추출하므로 추후 알고리즘의 변형 없이 낮은 피사계 심도의 동영상에 확장 적용하여 관심 영역을 실시간으로 추출할 수 있다. 본 논문에서 제안하는 방법은 가상 현실(VR)이나 실감 방송, 비디오 인덱싱 시스템과 같은 여러 응용 분야에 효과적으로 적용될 수 있고, 이러한 유용성은 실험 결과를 통해 보였다.
대부분의 영상에 존재하는 그림자는 다양한 딥러닝 기반 영상처리 작업을 수행함에 방해가 되는 요소이다. 영상 내 그림자는 다양한 광원과 다양한 물체들의 상호작용에 의해 복잡하게 생성되며 이를 제거하는 것을 통해 다양한 Computer Vision task의 성능을 향상시킬 수 있다. 이 논문에서는 영상 내 그림자를 감지하여 Attention mechanism을 통해 그림자를 제거하고 Recurrent 하게 작업을 수행하며 복잡한 그림자를 단계적으로 제거하는 네트워크를 구현하였으며, Recurrent 한 네트워크에서 이전 단계의 데이터를 다음 단계에 효율적으로 전달하는 방식에 대한 실험을 수행하였다.
간 커피에서 배터리 재료 추출/편두통의 원인 밝혀져/세계의 산호초가 파괴되고 있다/초고속의 기상 예보용 슈퍼컴퓨터/바르는 발기부전 치료제/설탕으로 오염물질 제거/화성 지하에 거대 얼음층/목성의 위성에 생명체 존재 가능성 희박/목성에서 위성 11개 새로 발견/22번째 아미노산 발견/플라스틱 분무로 식물해충 제거/외계 물체가 공룡의 멸종은 물론 번성과도 관련
본 논문은 비전 시스템을 통하여 입력되어 들어오는 회전된 물체를 보정하기 위해 사용하는 선 구조 분석 도구인 라돈변환의 문제점을 해결하기 위해 입력 영상 간소화 방법을 제안한다. 먼저, 비전 시스템을 통하여 입력된 영상 내에서 불필요한 배경 부분을 제거하여 물체 영상을 추출한다. 다음, 추출된 물체 영상에 대하여 기울기를 고려하여 제한된 물체 영상만을 라돈 변환의 최종 입력 영상으로 추출한다. 마지막으로 최종 입력 영상에 대하여 라돈 변환을 사용하여 회전각을 추출한 후, 원 영상 내의 회전된 물체를 보정한다. 실험 결과, 제안한 방법은 처리 속도를 약 64% 향상시킬 수 있었고, 기억용량은 약 18% 줄일 수 있었으며, 선 검출율은 약 18%까지 향상시킬 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.