• Title/Summary/Keyword: 물체 자세인식

Search Result 37, Processing Time 0.037 seconds

Recognition and Pose Estimation of 3-D Objects for Visual Servoing (Visual Servoing을 위한 3차원 물체의 인식 및 자세 추정)

  • Yang, Jae-Ho;Jeong, Moon-Ho;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1931-1932
    • /
    • 2006
  • 로봇이 어떤 물체를 인지하고 그 물체에 대해 어떤 작업을 하고자 할 때 특정 물체의 인식 문제, 3차원 정보를 획득하는 문제, 자세를 추정하는 문제 등 해결해야 될 문제들이 있다. 물체를 인식하는 과정에서는 주위 배경과 물체의 크기의 변화, 회전, 가려짐 등으로 인해 물체 인식을 어렵게 만드는 요소들이 있다. 2차원 이미지를 통해 3차원 정보를 추출하는 과정은 일반적으로 두 대의 카메라를 이용하여 스테레오 이미지를 통해 얻는다. 이 때 좌우 영상간의 매칭의 과정이 필요하다. 자세 추정의 문제는 카메라 좌표와 물체의 좌표간의 관계를 알아야 한다. Visual Servoing을 어렵게 만드는 많은 요인들이 있으며 본 논문에서는 물체의 크기, 회전, 이동에 불변인 디스크립터(descriptor)를 사용하는 SIFT(Scale Invariant Feature Transform)를 통해 3차원 물체의 인식과 자세를 추정하는 방법을 제시한다. 또한 자세 추정을 위해 2차원 Keypoint들의 매칭을 3차원 정보를 통해 검증하는 방법을 제시한다. (SIFT에 의해 추출된 point를 Keypoint라 명한다.)

  • PDF

Object and Pose Recognition with Boundary Extraction from 3 Dimensional Depth Information (3 차원 거리 정보로부터 물체 윤곽추출에 의한 물체 및 자세 인식)

  • Gim, Seong-Chan;Yang, Chang-Ju;Lee, Jun-Ho;Kim, Jong-Man;Kim, Hyoung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.15-23
    • /
    • 2011
  • Stereo vision approach to solve the problem using a single camera three dimension precise distance measurement and object recognition method is proposed. Precise three dimensional information of objects can be obtained using single camera, a laser light and a rotating flat mirror. With a simple thresholding operation on the depth information, the segmentations of objects can be obtained. Comparing the signatures of object boundaries with database, objects can be recognized. Improving the simulation results for the object recognition by precise distance measurement are presented.

3D object Modeling based on Superquadrics and Constructive Solid Geometry (Superquadric 과 CSG에 기반한 3차원 모델링)

  • 김대현;이선호;김태은;최종수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.149-152
    • /
    • 2000
  • 3차원 물체 형상 모델링은 인식에 있어서 중요한 역할을 차지하고 있다. 기존의 픽셀(pixel)기반 영상표현은 물체 고유의 유기적 구조를 반영할 수 없고, 에지(edge)나 기반 물체 표현법은 물체의 자세한 표현이 가능하지만 물체인식을 위해서는 많은 양의 속성들을 만들어내게된다. 따라서 물체인식을 위해서는 물체의 형상특징을 직선적으로 기술할 수 있는 체적소 기반 물체 표현 방법이 필요하다. 본 논문에서는 몇 개의 파리미터를 이용하여 3차원 정보를 효과적으로 얻을 수 있는 superquadric과 이를 기본 단위로 한 CSG(Constructive Solid Geometry) tree를 이용하여 3 차원 물체 형상모델링에 대해서 기술한다.

  • PDF

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

Unseen Object Pose Estimation using a Monocular Depth Estimator (단안 카메라 깊이 추정기를 이용한 미지 물체의 자세 추정)

  • Song, Sung-Ho;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.637-640
    • /
    • 2022
  • 3차원 물체의 탐지와 자세 추정은 실내외 환경에서 장면 이해, 로봇의 물체 조작 작업, 자율 주행, 증강 현실 등과 같은 다양한 응용 분야들에서 공통적으로 요구되는 매우 중요한 시각 인식 기술이다. 깊이 지도를 요구하는 기존 연구들과는 달리, 본 논문에서는 RGB 컬러 영상만을 이용해 미지의 물체들, 즉 3차원 CAD 모델을 가지고 있지 않은 새로운 물체들을 탐지해내고, 이들의 자세를 추정해낼 수 있는 새로운 신경망 모델을 제안한다. 제안 모델에서는 최근 빠른 속도로 발전하고 있는 깊이 추정 기술을 이용함으로써, 깊이 측정 센서 없이도 물체 자세 추정에 필요한 깊이 지도를 컬러 영상에서 구해낼 수 있다. 본 논문에서는 벤치마크 데이터 집합을 이용한 실험을 통해, 제안 모델의 유용성을 평가한다.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

Categorization of Aspect view direction for 3D object′s Pose Estimation (3차원 물체의 자세정보 추출을 위한 측면 측정방향군의 범주화)

  • 이재영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.508-510
    • /
    • 2001
  • 3차원 물체의 인식과 공간 정보를 추출해 내는 것이 물체인식의 주요 목적이다. 본 논문에서는 평면의 표면을 갖는 기하학적 물체들을 인식하는데 인공신경망이 적용 가능함이 조사되었다. 물체인식을 위한 모델들은 CAD모델들로부터 자동적으로 추출되며, 획득된 물체의 영상과 일치하는 물체의 국면(aspect)과의 매칭은 조건만족 인경신경망을 이용하여 매칭-오차를 최소화시키는 방법을 처리되었다. 인식된 물체의 국면이 어느 방향에서 획득되었는지에 대한 정보(Aspect's view direction)는 검색된 가시 평면들의 분포로부터 추출됨을 ART와 같은 인공신경망을 이용하여 실시간으로 복원할 수 있음을 보였다. 대표적이 측정방향과 이 측정방향으로부터의 편차들을 한 범주에 넣고 학습을 통해 정확한 측정방향 정보들을 구하며, 획득된 3차원 물체의 영상들에 따라 자동적으로 측정방향범주 들이 추가되도록 한다.

  • PDF

3D Object Recognition for Localization of Outdoor Robotic Vehicles (실외 주행 로봇의 위치 추정을 위한 3 차원 물체 인식)

  • Baek, Seung-Min;Kim, Jae-Woong;Lee, Jang-Won;Zhaojin, Lu;Lee, Suk-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.200-204
    • /
    • 2008
  • In this paper, to solve localization problem for out-door navigation of robotic vehicles, a particle filter based 3D object recognition framework that can estimate the pose of a building or its entrance is presented. A particle filter framework of multiple evidence fusion and model matching in a sequence of images is presented for robust recognition and pose estimation of 3D objects. The proposed approach features 1) the automatic selection and collection of an optimal set of evidences 2) the derivation of multiple interpretations, as particles representing possible object poses in 3D space, and the assignment of their probabilities based on matching the object model with evidences, and 3) the particle filtering of interpretations in time with the additional evidences obtained from a sequence of images. The proposed approach has been validated by the stereo-camera based experimentation of 3D object recognition and pose estimation, where a combination of photometric and geometric features are used for evidences.

  • PDF

An Indoor Pose Estimation System Based on Recognition of Circular Ring Patterns (원형 링 패턴 인식에 기반한 실내용 자세추정 시스템)

  • Kim, Heon-Hui;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.512-519
    • /
    • 2012
  • This paper proposes a 3-D pose (positions and orientations) estimation system based on the recognition of circular ring patterns. To deal with monocular vision-based pose estimation problem, we specially design a circular ring pattern that has a simplicity merit in view of object recognition. A pose estimation procedure is described in detail, which utilizes the geometric transformation of a circular ring pattern in 2-D perspective projection space. The proposed method is evaluated through the analysis of accuracy and precision with respect to 3-D pose estimation of a quadrotor-type vehicle in 3-D space.

Probabilistic Object Recognition in a Sequence of 3D Images (연속된 3차원 영상에서의 통계적 물체인식)

  • Jang Dae-Sik;Rhee Yang-Won;Sheng Guo-Rui
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.241-248
    • /
    • 2006
  • The recognition of a relatively big and rarely movable object. such as refrigerator and air conditioner, etc. is necessary because these objects can be crucial global stable features of Simultaneous Localization and Map building(SLAM) in the indoor environment. In this paper. we propose a novel method to recognize these big objects using a sequence of 3D scenes. The particles representing an object to be recognized are scattered to the environment and then the probability of each particles is calculated by the matching test with 3D lines of the environment. Based on the probability and degree of convergence of particles, we can recognize the object in the environment and the pose of object is also estimated. The experimental results show the feasibility of incremental object recognition based on particle filtering and the application to SLAM

  • PDF