본 논문에서는 매칭 에러 영상과 이동벡터를 이용한 효율적인 이동물체 외곽선 검출 알고리즘과 부분외곽선 정보를 이용한 이동물체 고속 추적 알고리즘을 제안하였다. 이동물체의 외곽선 검출은 watershed 알고리즘을 기반으로 확률분포함수를 적용하여 seed 영역을 생성하고 seed 영역을 확장하여 이동물체의 윤곽선을 검출한 다음 이동벡터를 이용하여 최종 외곽선을 추출한다. 외곽선 중 일부를 특징으로 하여 이동물체를 추적하는 알고리즘을 사용하였다. 이동물체 초기 특징 벡터는 이동물체의 외곽선 영역 중 상하좌우의 외곽선 일부분을 특징벡터로 정한다. 다음은 추적단계로 이전 프레임에서 얻은 특징벡터를 이용하여 현재 프레임에서 이동물체의 추적을 수행하였다. 실제영상에 대하여 제안된 알고리즘으로 이동물체추적 모의 실험을 수행한 결과 기존 능동 윤곽선 추적알고리즘은 물체 외곽선 전체를 추적하기 때문에 물체의 외곽선 길이에 따라 처리시간이 변화하지만 제안된 알고리즘은 이동물체의 외곽선 영역을 특징정보로 하여 추적하기 때문에 추적 연산이 간단하였다. 고속이동벡터를 추출 BMA 연산은 기존 알고리즘 보다 연산량이 약 39% 감소였고, 이동 물체 외곽선 검출 알고리즘은 과분할 문제점이 발생하지 않았으며, 상하 좌우 외곽선 정보를 이용하여 이동물체를 추적한 결과 추적오차는 특징벡터의 크기가 $(15\times{5)}$일 때 검색오차가 4 화소 이하로 양호하게 나타났다.
평면으로 이루어진 물체에 비하여 3차원 곡면물체는 물체의 표현에 많은 양의 데이터를 요구하면 일반적으로 물체의 특성을 명확하게 정의하기가 어려워 인식이 어렵다. 본 논문은 3차원화상을 이용하여 인식하고자 하는 물체에 대한 실용적인 표현법을 개발하고 물체를 보는 방향에 무관하게 인식할 수 있는 알고리즘을 고안하여 여러 가지의 다른 곡면물체를 자동으로 인식할 수 있는 방법을 제시한다. 본 논문에서는 수행하고자 하는 작업을 고려하여 설정된 몇 개의 가상점과 물체 표면점들의 상대적인 기하학적 성질을 이용하여 물체를 인식한다. 몇 개의 가상점으로 표현된 물체를 일반화된 Hough변환으로 인식하는 본 알고리즘은 적절한 가상점의 설정으로 다음에 계속되는 작업을 줄일 수가 있으며 일반적인 3차원곡면물체를 비교적 노이즈에 큰 영향없이 인식하게 한다.
본 논문에서는 복잡한 환경에서 버려진 물체를 감시하기 위해 코너 검출기를 이용하여 버려진 물체 주변의 특징점을 검출하고, 이를 이용하여 가려진 경우에도 위치 정보를 추정할 수 있는 방법을 제안한다. 기존의 방법은 버려진 물체가 검출된 이후 가림 현상이 발생하면, 버려진 물체의 위치 정보를 손실하기 때문에 지속적인 감시가 불가능하다. 본 논문에서는 이러한 문제점을 개선하기 위해 해리스 코너 검출자를 이용하여 버려진 물체 주변의 특징점들을 추출하고, 특징점들과 버려진 물체의 중심을 연결하는 서포터를 이용하여 물체의 상대적인 위치를 추정한다. 따라서 버려진 물체가 다른 객체에 의해 가려지더라도 주변 코너를 이용하여 상대적인 위치를 추정할 수 있다. 제안된 방법은 지능형 감시시스템에 적용되어 버려진 물체 검출 및 감시에 활용될 수 있으며 이를 통해 버려진 가방이나 물건 등으로 위장한 물체를 이용한 폭탄테러를 미연에 방지할 수 있다.
배경과 현재 프레임 영상간의 차영상을 이용하여 이동 물체를 탐지하는 방법은 비디오 감시 시스템에서 가장 보편적인 방법 중 하나이지만 신뢰할 수 있는 배경의 생성은 여전히 쉽지 않은 문제이다. 본 논문에서는 정지 물체를 고려한 적응적 배경 생성 기법을 제안한다. 연속적으로 입력되는 영상들의 산술 평균을 이용하여 초기 배경을 생성한다. 배경과 현재 영상간의 차영상을 구하여 물체를 탐지한 다음, 탐지된 물체가 일정시간이상 계속 정지해 있는 경우에는 그 물체를 정지 물체로 간주하고 정지 물체 영역을 배경으로 갱신한다. 한편, 이동 물체인 경우에는 배경 갱신에서 현재 프레임을 배제함으로써 지속적으로 물체를 탐지할 수 있도록 한다. 제안된 방법은 점진적인 조명의 변화, 느리게 이동하는 물체, 정지 물체 등이 존재하는 동영상에서도 적응적으로 배경을 생성할 수 있으며 이는 실험을 통해 확인되었다.
물체를 인식하기 위한 효율적인 방법 중의 하나는 물체의 경계선에서 가장 적절한 특징들을 추출해 내어 인식에 사용하는 것이다. 본 논문에서는 경계선 위의 각 화소에서 주변 화소들과의 관계를 이용해 코너점, 접점, 변곡점을 추출하여 물체의 특징점으로 사용하였다. 기존에 주로 사용되던 중요한 특징점의 하나인 코너점은 곡률 함수상에서 찾고, 또한 물체가 직선과 곡선으로 이루어져 있을 경우 코너점만으로 물체를 표현하기에 부족하므로 곡률 함수를 미디안 필터링하여 양자화 잡음을 제거함으로써 접점과 변곡점을 찾는 새로운 방법을 제안하였다. 그리고 이 세 가지 특징점을 물체 정합의 요소로 사용하여 물체를 정합하였다. 정합 방법으로는 Discrete Hopfield Neural Network을 사용하였으며, 성능 분석 결과 곡선이 섞인 물체에서 코너점만으로 물체를 정합한 경우보다 특징점으로 물체를 정합한 경우 우수한 정합 성능을 나타내었다.
일반적으로 스테레오 비젼 시스템에서 좌,우 영상의 시점이 일치하지 않거나 이동 물체가 영상의 중심 좌표에 있지 않을 경우에는 관측자에게 논의 피로감 주고 입체감을 느끼지 못하게 할뿐만 아니라 이동 물체의 추적이 어렵게 된다. 따라서 이동물체의 주시각을 제어하면서 추적 물체가 항상 영상의 중앙에 위치하도록 제어하는 것이 스테레오 물체추적 시스템이다. 본 논문에서는 스테레오 물체추적의 새로운 접근방법으로 적응적 물체 추적이 가능한 광 JTC를 이용하여 이동 물체를 추적하는 스테레오 물체추적 시뮬레이터를 구현하였다. 또한, 시뮬레이터를 이용하여 JTC의 추적 결과를 비교 분석하여 실험 결과를 예측할 수 있었으며, 광학실험을 통해 배경 잡음이 존재해도 실시간적 물체 추적이 가능한 스테레오 물체추적 시스템의 구현 가능성을 제시하였다.
무선 센서 네트워크에서 이동하는 물체를 에너지 효율적으로 추적하기 위하여 많은 연구가 진행되고 있다. 그 중 대표적인 것은 물체의 이동에 따라 동적으로 클러스터링을 구성해 나가는 방법이다. 물체의 이동에 따라 클러스터를 구성한 후 클러스터 내부에서는 모든 센서 노드들이 연속적으로 물체를 모니터링하거나 혹은 일반적인 스케줄링 기법을 사용하여 에너지 소모를 분산시킨다. 이런 스케줄링 기법들은 환경 모니터링 등 일반적인 센서 네트워크를 대상으로 개발되고 있기 때문에 이동하는 물체를 추적하는 응용에서는 적합하지 않다. 본 논문에서는 물체의 이동경로를 따른 동적 클러스터링 환경에서 물체의 이동 정보를 고려한 클러스터 내부에서의 스케줄링 기법을 제안함으로써 이동하는 물체에 대한 missing-rate를 최소화하는 동시에 에너지 소모를 최대한 줄임으로써 전체 센서 네트워크의 생명주기를 연장시키고자 한다. 시뮬레이션 결과가 증명하는 바와 같이 제안한 방안은 보다 낮은 에너지 소모와 missing-rate를 달성하였다.
과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.
본 논문은 신경회로망을 이용한 물체인식에 관한 연구로써, 인식은 물체의 경계점으로부터 추출된 국부 특징들로 구성되는 각 선형선소들간의 매칭에 의해 이루어진다. 그러나 추출된 특징들은 물체를 구성하는 선형선소들간의 유사성 때문에 특징 공간상에서 다른 모델과의 경계가 불분명하게 되므로 인식의 애매성이 발생하고, 특징의 유사성에 기인한 신경 회로망의 경계분리능력의 한계에 따라 인식률의 저하를 가져온다. 따라서, 본 논문에서는 인식의 애매성을 해소하고, 인식율의 향상을 도모할 수 있도록 2개의 신경회로망을 다단결합한 물체인식 시스템을 구성하였으며, 물체를 효과적으로 기술할 수 있는 국부 특징량을 사용하였다. 실험을 통하여 구성된 물체인식 시스템의 타당성을 확인하였으며, 중복 물체 및 변형된 물체에 적용하여 그 결과를 고찰하였다.
본 논문에서는 해상 클러터를 고려하여 움직이는 물체의 SAR 원시 데이터를 생성하고, SAR 원시 데이터 중간 처리 결과인 range 압축 데이터의 azimuth 차분 신호로부터 물체의 속도를 측정하는 방법을 여러 가지 환경에 적용하여 그 정확도 및 적용 가능한 경우를 분석하였다. 움직이는 물체에 의한 도플러 중심 주파수의 변이가 azimuth 차분 신호에서 위상의 변화를 가져오므로, 이를 이용하여 움직이는 물체의 속도를 측정하는 알고리듬을 정리하였다. 이 알고리듬을 위에서 생성한 range 압축 데이터에 적용하여, 타깃이 되는 물체가 독립적으로 존재하는 경우, azimuth 상에 또 다른 속도를 가지는 산란체가 존재하는 경우, 그리고 높은 후방산란계수를 가지는 육지에 타깃이 되는 물체가 인접해 있는 경우를 가정하여 속도를 측정하였다. 그 결과, 타깃이 되는 물체가 SAR 영상에서 256 픽셀 범위 내에서 독립적으로 존재할 경우에는 높은 정확도로 물체의 속도를 측정할 수 있었으나, 128 픽셀 범위에 다른 움직이는 물체가 존재하거나, 높은 후방산란 계수를 갖는 육지와 인접해 있을 경우에는 최대 1m/s 의 오차를 나타냈다. 이는 주변 산란체의 영향에 의해 신호가 교란되어 목표물의 위치를 추정하는 과정에서 오차가 발생했기 때문이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.