최근 드론의 역할은 농업∙건설∙물류등의 다양한 영역으로 확대되고 있으며 특히 농업인구가 고령화되는 현 상황에 따라 드론은 노동력 부족 문제를 해결할 효과적인 대안으로 떠오르고 있다. 이에 본 논문에서는 농업 현장에서의 부족한 노동력을 보완하고 높은 위치의 과일도 안전하게 수확할 수 있는 드론 탑재형 과일수확 시스템을 제안한다. 과일수확 시스템은 과일인식 알고리즘과 과일수확 메커니즘으로 구성되어 있다. 과일인식 알고리즘은 딥러닝 기반의 객체탐지 알고리즘인 You Only Look Once를 사용하였고, 가상 시뮬레이션 환경을 구축하여 가능성을 검증하였다. 또한, 하나의 모터로 구동이 가능한 과일수확 메커니즘을 제안하였다. 모터의 회전운동을 기반으로 Scotch yoke을 구동시켜 선형운동으로 변환하여 gripper가 전개된 상태에서 과실에 접근 후 과실을 잡고 돌려 수확하는 메커니즘이다. 제안된 메커니즘에 대한 다물체동역학 해석을 수행하여 구동 가능성을 검증하였다.
본 논문은 무인수상정의 자율운항을 위한 장애물 탐지 및 회피기동을 위해 3차원 라이다를 사용하였다. 단일센서만을 사용해서 해상조건에서의 무인수상정 장애물 회피운항을 하는데 목적이 있다. 3차원 라이다는 Quanergy사의 M8센서를 사용하여 주변 환경 장애물 데이터를 (r, , )로 수집하며 장애물 정보에는 Layer 정보와 Intensity 정보를 포함한다. 수집된 데이터를 3차원 직각좌표계로 변환을 하고, 이를 2차원 좌표계로 사상한다. 2차원 좌표계로 변환한 장애물 정보를 포함하는 데이터는 수면위의 잡음데이터를 포함하고 있다. 그래서 기본적으로 무인수상정을 기준으로 가상의 관심영역을 정의하여서 규칙적으로 생성되는 잡음데이터에 대해서 삭제를 하였으며, 그 이후에 발생하는 잡음데이터는 Vector Field Histogram으로 계산된 히스토그램 데이터에서 Threshold를 정해 밀도값에 비례하여 잡음데이터를 제거하였다. 제거된 데이터를 이용하여 무인수상정의 움직임에 따른 상대물체를 탐색하여 가상의 격자지도에 1 Cell씩 저정하면서 데이터의 밀도 지도를 작성하였다. 작성된 장애물 지도를 폴라 히스토그램을 생성하고, 경계값을 이용하여 회피방향을 선정하였다.
자율주행차량에서 핵심적인 역할을 수행하는 LiDAR의 주변 환경 검지 시인성을 향상시키기 위해서는 LiDAR 성능의 개선 뿐만 아니라, 검지 물체의 개선도 필요하다. 이에 본 연구는 LiDAR 센서를 통해 수집되는 point cloud 데이터 기반의 형상인식 알고리즘을 활용하여 자율주행차량이 인식하기에 유리한 교통안전표지 형상과 개선방안을 제시하였다. 실험을 위해 point cloud 활용 연구에서 보편적으로 활용되는 DBSCAN 기반의 도로표지 인식·분류 알고리즘을 개발하고 실도로 환경에서 32ch LiDAR를 활용, 도로표지 5종에 대한 인식 성능 실험을 수행하였다. 연구결과, 정사각형이나 원형보다는 상하 비대칭이 있는 정삼각형, 직사각형과 같은 형상이 보다 적은 점군의 수로도 검지가 가능하고, 83% 이상의 높은 분류 정확도를 보였다. 또한, 정사각형 표지의 크기를 1.5배 확대할 경우, 분류 정확도를 향상시킬 수 있었다. 이러한 결과는 미래 자율주행 시대의 센서를 위한 전용 도로·교통안전시설물 개선 및 신규 시설물 개발에 활용될 수 있을 것으로 기대된다.
다양한 구조의 라이다(light detection and ranging, LiDAR)가 존재함에도 불구하고 넓은 화각을 유지하면서 장거리 측정과 수직, 수평 방향 모두에서 높은 해상도를 만족하는 LiDAR를 구현하는 것은 매우 어렵다. 스캐닝 구조는 장거리 탐지 및 수직, 수평 방향에 대한 높은 해상도를 만족하는 고성능 LiDAR를 구현하는 데 유리하지만, 넓은 화각을 확보하기 위해서는 검출 속도에 불리한 대면적 광 검출기(photodetector, PD)가 필수적이다. 따라서 이러한 문제점을 해결하기 위해 다수의 소면적 PD를 고속의 단일 대면적 PD로 작동할 수 있는 static unitary detector(STUD) 기술 기반의 PD를 제안하였다. 본 논문에서 제안하는 InP/InGaAs STUD PIN-PD는 1,256 ㎛×19 ㎛의 단위 면적을 가지는 32개 소면적 PD를 활용하여 1,256 ㎛×949 ㎛ 이내에서 다양한 형태로 설계 및 제작하였다. 이후 다양한 형태로 제작된 STUD PD의 특성과 감도는 물론 이를 활용한 LiDAR 수신 보드의 잡음 및 신호 특성에 대해 측정 및 분석하였다. 마지막으로 STUD PD가 적용된 LiDAR 수신 보드를 1.5-㎛ master oscillator power amplifier 레이저를 광원으로 활용하는 3차원 스캐닝 LiDAR 시제품에 적용하였고, 이를 통해 대각 32.6도의 광각에서 50 m 이상의 장거리 물체를 정밀하게 탐지하면서 320 px×240 px의 고해상도 3차원 영상을 동시에 확보하였다.
철강은 기계 산업의 가장 기본적인 구성 요소 중 하나이다. 그러나 철강의 표면 결함은 제품의 품질에 큰 영향을 미친다. 따라서 연구자들은 표면 결함 감지기의 필요성에 주목하고 딥 러닝을 이용한 방법은 객체 결함 감지를 하는데 많이 사용된다. 연구 개발용으로 학습 모델 개발에 초점을 맞추지만 실제 산업환경에 실질적인 영향을 미치는 실시간 적용은 아직 적용되지 않는 한계와 개선의 여지가 필요하다. 본 연구는 YOLOv4를 기반으로 한 철강 표면 결함 감지의 실시간 적용을 제안한다. 첫째, 본 연구는 실시간 응용 모델을 적용하는 것을 목적으로 하며 실시간 객체 검출기의 가장 유명한 알고리즘 중 하나인 one-stage Detector의 YOLO 알고리즘을 중심으로 연구를 진행하였다. 둘째, 사전 훈련된 YOLOv4-Darknet 플랫폼 모델과 전이학습을 사용하여 철강 표면 오픈 소스 데이터셋 NEU-DET을 이용하여 학습과 테스트를 진행하였다. 본 연구에서는 철강 표면의 패치, 구멍 난 표면, 불순물, 스크래치 4가지 유형의 결함을 이용하였다. 셋째, 87.1% mAP@0.5의 정확도와 60fps 이상의 시스템 구축을 위해 YOLOv4를 이용하여 훈련된 모델의 실시간 성능을 평가하였다.
엑스선 후방산란 영상획득기술은 물체에서 산란되는 엑스선을 활용하여 피조사체 내부 영상을 획득할 수 있는 기술로 영상획득을 위해서는 시스템은 엑스선 발생장치와 산란 엑스선을 측정하기 위한 검출시스템을 포함하여야 한다. 엑스선 후방산란 영상획득장치는 고속으로 회전하는 회전 콜리메이터를 통해 생성되는 엑스선을 샘플링 간격으로 실시간 신호를 획득하여야 하며 이를 위해서는 고속 신호획득장치가 요구된다. 우리는 후방산란 영상획득장치를 위해 대면적 플라스틱 섬광체(500×600×50mm3)와 광증배관으로 구성된 후방산란 엑스선 획득용 센서부에서 생성되는 신호의 변환 및 전달하기 위한 고속 다채널 신호획득장치를 개발하였다. 개발한 후방산란 영상획득용 검출시스템은 최소 15u초 간격으로 신호의 획득이 가능하며 최대 6채널의 신호의 변환 및 전달이 가능한 시스템으로 고속 후방산란 엑스선 영상획득이 가능하다. 개발된 검출시스템은 개별 센서의 보정을 위한 전압, 신호이득, 저레벨 제거 등의 원격 조절 기능을 포함한다. 현재 우리는 다양한 조건에서 엑스선 후방산란 영상획득을 적용 시험을 수행하고 있다.
콘크리트의 주재료인 골재 중 굵은 골재의 품질관리는 현재 샘플링을 통한 통계적 공정관리(SPC) 방법으로 하고 있다. 본 논문은 굵은 골재에 대한 품질관리를 현재의 체거름 방식을 대신 카메라를 통해 획득한 영상을 기반으로 굵은 골재를 검사하게 바꾸어 제조 혁신을 위한 스마트팩토리를 구축하였다. 먼저, 얻은 영상을 전처리 하였고, 딥러닝으로 학습된 HED(Holistically-nested Edge Detection)필터는 각각의 물체를 Segmentation하였다. 이 Segmentation한 결과를 영상 처리하여 각각의 골재를 분석 후 이 결과를 바탕으로 조립률, 입형률을 파악한다. 영상을 통해 얻은 골재들의 조립률, 입형률을 계산하여 골재의 품질을 검사하였고 알고리즘의 정확도는 실제로 체 가름 방식을 통해 골재의 품질을 비교한 것과 90% 이상의 정확도를 보이는 결과가 나왔다. 또한 기존의 방법으로는 골재의 입형률을 검사할 수 없었지만 본문의 내용을 통해 골재의 입형률도 측정할 수 있게 되었다. 입형률의 경우 도형을 사용하여 검증하였는데 이는 ±4.5%의 차이를 보였다. 골재의 길이 측정의 경우 실제 골재의 길이를 비교하였는데 ±6%의 차이를 보였다. 실제 3차원의 데이터를 2차원의 영상에서 분석하다보니 실제 데이터와 차이가 생겼는데 이는 추후 연구가 필요하다.
본 연구에서는 한국의 중등학교 과학 교육과정과 교과서를 분석하여 시각 개념 표현 방식과 연계성은 어떠한지를 분석하고, 개념의 수준을 고려하여 시각 개념을 이해시키기 위한, 연계성 있는 시각 개념 구성을 제안하는 것을 목적으로 하였다. 연구의 방법은 문헌 분석 방법을 사용하였으며, 문헌 분석은 제7차 한국의 과학 교육과정과 제7차 과학 교육과정에 따라 개발된 과학 및 물리I 교과서를 분석하였다. 한국의 현행 교육과정과 현행 과학 교과서의 분석을 통한 연구 결과를 요약하면 다음과 같다. 첫째, 과학 교육과정상으로 보면 시각 개념의 연계성에 문제가 없어 보이지만 교육과정에 따라 실제로 집필된 교과서 내용상으로는 시각 개념의 연계성에 문제가 있는 것으로 나타났다. 눈에서 수정체의 기능은 8학년에서 학습하도록 되어 있는데도 7학년에서 안경에 의한 시력 보정의 원리가 제시되고 있는 것은 개념 이해에 어려움이 있을 것으로 보인다. 둘째, Kepler는 Alhazen의 시각 개념에서 물체의 한 점에서 반사된 한 광선이 수정체의 한 점에 도달하여 그 점의 상을 맺을 수 있다는 설명에서 문제점을 발견하고 현대적인 시각 이론을 세웠지만 한국의 일부 과학 교과서는 여전히 Alhazen 방식의 망막 상 형성을 설명하고 있다. 셋째, 근시와 원시의 원인에 대한 설명의 일관성이 없는 경우가 있고, 대부분 두 가지 이유 중의 한 가지로만 설명하고 있다. 마지막으로, 개념 위계를 고려한 시각 개념의 연계적 구성에 있어서는 볼록렌즈에 의한 상에 대해 학습한 후에 우리 눈의 구조와 기능이 제시되어야 하며, 우리 눈의 구조와 기능을 학습한 후에 안경의 기능과 시력 보정이 제시될 필요가 있다.
본 논문에서는 적외선 이미지에서 딥러닝 물체 탐지를 사용하여 유도무기의 표적 탐지 정확도 향상 방법을 연구한다. 적외선 이미지의 특성은 시간, 온도 등의 요인에 의해 영향을 받기 때문에 모델을 학습할 때 다양한 환경에서 표적 객체의 특징을 일관되게 표현하는 것이 중요하다. 이러한 문제를 해결하는 간단한 방법은 적절한 전처리 기술을 통해 적외선 이미지 내 표적 객체의 특징을 강조하고 노이즈를 줄이는 것이다. 그러나, 기존 연구에서는 적외선 영상 기반 딥러닝 모델 학습에서 전처리기법에 관한 충분한 논의가 이루어지지 못했다. 이에, 본 논문에서는 표적 객체 검출을 위한 적외선 이미지 기반 훈련에 대한 이미지 전처리 기술의 영향을 조사하는 것을 목표로 한다. 이를 위해 영상과 이미지의 전역(global) 또는 지역(local) 정보를 활용한 적외선 영상에 대한 전처리인 Min-max normalization, Z-score normalization, Histogram equalization, CLAHE (Contrast Limited Adaptive Histogram Equalization)에 대한 결과를 분석한다. 또한, 각 전처리 기법으로 변환된 이미지들이 객체 검출기 훈련에 미치는 영향을 확인하기 위해 다양한 전처리 방법으로 처리된 이미지에 대해 YOLOX 표적 검출기를 학습하고, 이에 대한 분석을 진행한다. 실험과 분석을 통해 전처리 기법들이 객체 검출기 정확도에 영향을 미친다는 사실을 알게 되었다. 특히, 전처리 기법 중에서도 CLAHE 기법을 사용해 실험을 진행한 결과가 81.9%의 mAP (mean average precision)을 기록하며 가장 높은 검출 정확도를 보임을 확인하였다.
수소연료전지의 중요성은 계속 강조되며, 이 분야에서의 교육 및 훈련 수요가 증가하고 있다. 다양한 교육 환경 중에서 메타버스 교육은 특히 원격 학습에 대응하기 위해 글로벌 교육산업에서 새로운 변화의 시대를 열고 있다. 메타버스가 교육에 가져온 가장 중요한 변화는 단방향, 강사 중심 및 정적인 가르침 접근에서 다방향 및 동적인 접근으로의 전환이다. 메타버스는 수소 연료전지 엔지니어 교육에서도 효과적으로 활용될 것으로 예상되며, 교육과 훈련이 언제 어디서나 가능하게 함으로써 교육의 효과를 향상시킬 뿐만 아니라 엔지니어링 교육에 관련된 비용을 줄일 수 있을 것으로 기대된다. 본 연구에서는 이러한 아이디어에 영감을 받아 연료 전지 교육 플랫폼을 설계하고 있다. 메타버스를 활용하여 이론 학습 및 훈련을 결합한 플랫폼을 만들었다. 본 연구에서는 학습 참여자의 참여도를 높이기 위한 교육 훈련 콘텐츠 개발, 사용성 향상을 위한 사용자 인터페이스 구성, 가상 세계에서 물체와 상호 작용하는 환경 생성, 디지털 트윈 형태의 수렴 서비스 지원 등의 주요 요소를 개발했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.