햅틱 렌더링이 발전함에 따라서 촉감을 통하여 사용자에게 전달하려고 하는 가상 물체의 성질도 다양해 지고 있다. 이 논문은 균일하지 않은 강도(Stiffness)를 가지는 가상 물체를 기존의 페널티 기반 알고리즘(Penalty-based algorithms)을 사용하여 렌더링하는 경우 물체 표면의 모양(Topography)이 사용된 모델과 달리 왜곡되어 인지되는 현상을 해결하기 위한 햅틱 렌더링 알고리즘에 관한 연구를 보고한다. 첫 번째로 저자의 선행 연구인 힘 유지 가설(Force Constancy Hypothesis) - 사용자가 물체 표면의 모양을 획득하기 위해 물체를 만질 때 일정한 크기의 접촉 힘을 유지한다 - 을 소개한다. 다음으로 힘 유지 가설에 기반한 물체의 모양 및 강도를 왜곡 없이 정확하게 렌더링하는 알고리즘을 제안하고 폴리곤 모델에 적용하는 방법을 설명한다. 마지막으로 실험을 통하여 개발된 알고리즘의 성능을 입증한다.
본 논문은 이동물체 영역을 신뢰성 있게 분리하는데 기초가 되는 seed를 정확하게 선정하고, 선정된 seed를 중심으로 영역을 확장함으로써 이동물체 영역을 분리하기 위한 방법을 제안한다. 고정된 카메라로부터 입력되는 연속된 영상열로부터 초기의 이동물체가 존재하지 않는 영상을 참고영상으로 하여 입력영상과의 차영상을 구하고 차영상의 히스토그램에서 배경잡음 모델링을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 Local Maxima 들을 이용해 후보 seed를 선정한 후, 이드의 특징값들을 분석하여 이동물체의 seed와 배경의 seed 를 결정하고 이 두 개의 seed를 기반으로 watershed 알고리즘을 적용하여 영역을 확장함으로써 이동물체 영역을 추출한다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역분리 알고리즘보다 주위 잡음의 영향을 적게 받으며 효과적으로 이동물체를 분리할 수 있음을 확인할 수 있었다.
본 논문은 두 대의 카메라로 제안하는 물체의 색상, 움직임, 형태상의 특성을 이용하여 3차원 공간상의 움직임을 실시간으로 추출하는 것을 목적으로 한다. 본 논문에서 제안하는 물체는 구조상 물체 자체가 캘리브레이션 물체의 역할을 포함하여 캘리브레이션이 되지 않은 상황에서도 정확하게 물체의 3차원 정보를 추출할 수 있으므로 3차원 입력 디바이스로 이용할 수 있다. 3차원 움직임을 추출하기 위해 먼저 3차원 공간상의 물체와 좌우 영상의 상관관계를 구하고 좌우 즉 영상에서 원이 위치할 탐색영역은 MAWUPC 알고리즘을 이용하여 예측한다. 탐색영역 안에서 PCA를 사용하여 원의 정확한 위치를 찾으며 좌우 영상에서 얻은 원의 위치와 스테레오 카메라의 기하학적 구조를 종합하여 3차원 움직임을 추출한다. 추출한 3차원 움직임은 가상환경에서 가상 물체의 움직임을 제어하는데 응용할 수 있다.
비디오에서의 물체 추적은 컴퓨터비젼(computer vision)의 주요 연구 분야로 지능형 로봇, 무인 감시 체제 등의 영역의 핵심 기술로 여겨지고 있다. 본 논문에서는 다중물체추적을 통해 카메라로 부터 입력된 동영상에서 특정 장소를 지나가는 사람들을 추적함으로서, 그 지역에서의 인구의 이동 패턴을 추출하고 자 한다. 물체 추적은 블롭 추적(blob tracking) 방식을 이용하며, 이를 위해 정확한 전경물체 추출, 추출된 이미지 블롭(blob)과 기존 트랙과의 연결, 새로운 물체(사람)의 등장과 퇴장등의 작업을 수행한다. 추적된 물체들이 궤적을 통해, 시간의 변화에 따른 그 지역에서의 인구의 밀도, 주 이동 경로, 방향 등의 변화를 추출한다. 이러한 통계치는 해당 지역의 개발 정책 수립 및 시장성 조사를 위한 2차 데이타로 활용할 수 있다.
본 논문에서는 영상처리 기술을 기반으로 한 내부 운전자에게 위협이 될 수 있는 금속 물체를 탐지하기 위한 실시간 시스템을 제안한다. 제안된 시스템은 퍼지 이론을 이용하여 금속물체를 탐지할 수 있는 색상 필터를 설계하여 사용하였다. 차량안의 특정 탐지 영역 내에서 FCF(Fuzzy Skin Filter)를 이용하여 운전자의 얼굴 영역을 탐지하고, 동승자가 위협을 가한다는 가정 하에 손 영역을 탐지한다. 탐지된 동승자의 손 영역을 중심으로 색상기반 원형 탐색기법을 사용하여 최종 금속물체의 후보영역을 설정하고, 금속물체 색상필터를 적용하여 최종적인 금속물체영역을 탐지 한다. 제안된 방법은 여러 실험을 통해 내부 운전자 보호를 위한 금속물체 탐지 시스템의 우수성을 증명한다.
본 연구에서는 입력된 영상을 구성하는 객체의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 현재 MPEG-7의 XM에서 제안된 영상 검색 기술은 정확한 검색이나 유사도를 측정한 수 있는 기능을 가지는 객체정보를 정확하게 추출했다는 가정하에서 기술되고 있다. 그러나 실제 영상에서 물체의 외곽선을 정확히 추출하는 것은 매우 어려우며 물체 내부에 중요한 특징이 있을 때 이를 표현하기도 어렵다. 따라서 현재의 영상 검색 시스템에서는 물체의 추출 없이 물체 외곽선 및 내부 특징에 대한 대략적인 정보를 이용하여 검색을 할 수 있는 형태 위주의 정보가 필요하다. 이를 위해 8방향 chain code를 이용하여 입력 영상으로부터 물체의 중요한 특징 중 하나인 물체의 내부 외부의 경계선을 추출하여 영상의 특징으로 이용한다. 이렇게 함으로써 기존의 물체 추출의 과정없이 형태에 대한 영상 검색을 수행한 수 있다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 환 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다.
다양한 센서 및 영상 카메라를 이용한 교통, 보안 및 안전 감시 시스템에 있어 처리해야 하는 영상 데이터의 양은 점점 커져가고 있다. 또한 단일 카메라가 아닌 많은 수의 카메라를 이용할 경우 운영자가 모든 영상 데이터를 확인하고 이에 대한 응답을 즉시 하기가 힘이 든다. 따라서 영상 데이터를 이용하기 위한 시스템에서 소프트웨어적인 처리는 필수이며 물체를 정확하게 추적하기 위해서는 물체를 인식하고 물체의 움직임을 예측하고 움직임을 보정하는 단계가 필요하다. 본 논문에서는 물체의 움직임을 정확히 추적하기 위하여 이동 물체를 추적할 때에 적절한 Kalman 필터를 이용하여 고속 물체 추적 시스템을 구현하였다.
본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.
내용을 기반으로 하는 영상검색에 있어 색상과 물체의 특징은 중요한 요소로서, 지금까지의 검색 기법들은 이들을 중심으로 연구가 진행되어 왔으며, 이들을 추출하기 위해서는 color 영상에서의 배경과 물체의 분리는 선행되어야 할 중요한 과제이다. color 영상에서 물체를 분리 하고자 하는 여러 가지 시도가 있었으나, 대부분 clustering 에 준하고 있으며, 처리시간이나 결과에 있어서 그다지 좋은 효과를 내지 못하는 것도 사실이다. 따라서, 영상검색을 위한 물체의 분리 기법으로서는 적합하지 않다. 본 논문에서는 물체가 영상의 중심에 주로 위치한다는 점에 착안한 방법을 응용하여 영상의 외곽에 존재하는 색상뿐만 아니라 명암까지 분석하여, 배경을 구성하는 화소들의 색상 및 명암과 동일하지 않은 색상들로 이루어진 부분을 물체로 판단, 추출하는 기법에 대해 설명하고, edge를 추출해낸 영상의 정보와 합성하여 최적의 물체를 찾아 검색을 하는 기법에 대하여 기술하였다.
기존의 주성분 분석을 이용한 물체 인식 기술은 모델 영상내의 각각의 물체의 대표 값을 만든 후에 실험 영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 그러나 단순히 기존의 방법인 point to point 방식인 단순 거리 계산은 오차가 많기 때문에 본 논문에서는 개선된 Class to Class방식인 k-Nearest Neighbor을 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델영상들을 인식의 단위로 이용하였다. 또한, 물체 인식을 하는데 있어 본 논문에서 제안한 주성분 분석법을 물체 영상 자체를 계산하여 인식하는 게 아니라 물체 영상 공간이라는 고유 공간을 구성한 후에 단지 기여도가 큰 8개의 벡터로만 인식을 수행하기 때문에 자원 축소의 효과까지 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.