• Title/Summary/Keyword: 물질-장 분석

Search Result 541, Processing Time 0.03 seconds

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Sorption of aqueous uranium(VI) ion onto a cation-exchangeable K-birnessite colloid (양이온 교환능을 갖는 K-Birnessite 콜로이드에 의한 수용성 우라늄(VI) 이온의 흡착 연구)

  • Kang, Kwang-Cheol;Kim, Seung-Soo;Baik, Min-Hoon;Kwon, Soo-Han;Rhee, Seog-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • This paper describes the sorption behaviors of aqueous uranium ions on the K-birnessite. K-birnessite was synthesized by adding a concentrated HCl to an aqueous solution of $KMnO_4$. Physicochemical characteristics of the K-birnessite, such as structure, specific surface area and surface charge, were investigated. K-birnessite is a layered material and the $K^+$ ions exist in the interlayer of layered K-birnessite. BET specific surface area of the K-birnessite was 38.30 m2/g. The surface charge of K-birnessite was $-1.65\;C/m^2$ at pH 5.00 and ionic strength of 0.010 M $NaClO_4$, at which the sorption experiments of uranium ions were carried out. Uranium ions were incorporated into the interlayer of the K-birnessite by cation-exchange reaction with $K^+$ ions, and the distribution coefficient is quite similar to those of common ion-exchange materials. The results might be applicable in the retardation of migration of radioactive materials from the underground disposal site of high-level radioactive waste.

Phenolic compounds of must and wine supplemented with Muscat Bailey A grape fruit stem (송이줄기 첨가에 따른 Muscat Bailey A 포도의 발효 중 발효액 및 포도주의 생리활성 물질 함량)

  • Jeong, Se-Hyun;Chang, Eun-Ha;Hur, Youn-Young;Jeong, Sung-Min;Nam, Jong-Chul;Koh, Sang-Wook;Choi, In-Myung
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • This study investigated the phenolic compounds of must and wine supplemented with different concentrations (0% (no added stems), 1%, 2%, 3%, and 5%) of fruit stems during winemaking using Muscat Bailey A (MBA) grapes. The red color, and total anthocyanin, total polyphenol, and tannin contents of the must and wine significantly (p<0.05) increased with increasing added amounts of grape fruit stems, while the volatile acid content decreased with increasing added amounts of grape fruit stems. Catechin (8.16~23.08 mg/L), gallic acid (2.32~3.28 mg/L), trans-resveratrol (1.38~3.27 mg/L), and ferulic acid (1.51~1.59 mg/L) were detected in the must and wine via HPLC. The bioactive substance contents increased with increasing added amounts of grape fruit stems, except for ferulic acid. The DPPH $IC_{50}$ activity was higher in the wine (12 mg/L) with 5% grape fruit stems than in ascorbic acid (67 mg/L). These results suggest that the fruit stems of MBA grapes can be used as functional materials for winemaking.

Influence of Pinewood Nematode, Bursaphelenchus xylophilus, on the Growth of Endoparasitic Fungus Esteya vermicola (Endoparasitic fungus Esteya vermic의 성장에 미치는 소나무 선충 Bursaphelenchus xylophilus의 영향)

  • Wang, Chun-Yan;Lee, Chung-Ha;Lee, Mi-Ra;Yun, Beom-Sik;Liu, Lei;Wang, Zhen;Fang, Zhe-Ming;Zhang, Dong-Liang;Li, Zheng;Sung, Chang-Keun
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.644-648
    • /
    • 2010
  • The influence of nematodes on nematophagous fungi has seldom been investigated. In the present study, the influence of pinewood nematode on its endoparasitic fungus, Esteya vermicola, was investigated systemically. Although both nematodal metabolite and nematodal homogenate could stimulate and speed up the growth of E. vermicola, the impact of nematodal metabolite was slightly higher than that of nematodal homogenate. In addition, a method was developed to investigate the influence of volatiles, discharged by pinewood nematodes in their metabolic process, on the growth of E. vermicola. Reproductive results were given and confirmed that nematodal volatiles have no influence on the cell growth of E. vermicola. This study may provide information for the application of E. vermicola as biological control agent of pinewood nematode.

Technical Review on Thorium Breeding Cycle (토륨 핵연료 주기 기술동향)

  • Noh, Taewan
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.52-64
    • /
    • 2016
  • The production of nuclear energy from thorium which is non-fissile material was a main issue until the middle of 1970's, because of the thorium's abundance as energy resources, its capability of breeding fissile material U233, and the reduction of long-lived actinides. However, to use thorium as nuclear fuel, some obstacles such as the necessities of external neutron source and long-term neutron irradiation for effective breeding, and the production of high radioactive isotopes in the course of thorium breeding cycle should be overcome. The difficulties to resolve these cons of thorium cycle became the reason of interruption of the related researches in the middle of 1970's. But in the 21st century, the change of societal perspective regarding nuclear energy and the appearance of accelerator-driven nuclear reactor shift those cons into pros and rehabilitate the study of thorium. The high activity of thorium cycle turned out to be a good option as higher resistance and easier detectibility of nuclear proliferation and the employment of subcritical accelerator-driven reactor as external neutron sources is considered to enhance the nuclear safety. In this study we compare the thorium cycle with the currently-used uranium cycle and analyze the technical status and perspective of thorium researches which use accelerator-driven reactors.

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens (Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성)

  • Yoon, Mi-Young;Seo, Kook-Hwa;Lee, Sang-Heon;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

Research trends in seabird and marine fish migration: Focusing on tracking methods and previous studies (바닷새 및 해양어류의 이동 연구 동향: 위치추적 기법과 연구 사례를 중심으로)

  • Jin-Hwan Choi;Seongho Yun;Mi-Jin Hong;Ki-Ho Kang;Who-Seung Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.25-53
    • /
    • 2022
  • In this study, trends in research methods and topics of seabird and marine fish migration were examined. Based on the framework of existing animal migration studies, future research directions were proposed in relation to the migration of seabirds and fish. In terms of research methodology, with the development of science and technology, tracking techniques using radio telemetry, acoustic telemetry, RFID (radio-frequency identification), satellite tracking, and geolocators are widely used to study seabird and fish migration. Research is also conducted indirectly through a population survey and the analysis of substances in the body. Research contents are largely classified into extrinsic factors that affect migration(such as environmental variables and interspecific competition), intrinsic factors such as hormones, anthropogenic activities including fishery and offshore wind farm, and the effect of global climate change. In future studies, physiological factors that influence or cause migration and dispersal should be identified concerning intrinsic factors. For the analysis of migration ability, it is necessary to study effects of changes in the magnetic field on the migration ability of seabirds and fish, interspecific differences in spatiotemporal migration ability, and factors that influence the migration success rate. Regarding extrinsic factors, research studies on effects of anthropogenic disturbances such as fishery and offshore wind farm and global climate change on the migration and dispersal patterns of marine animals are needed. Finally, integrated studies on the migration of seabirds and fish directly or indirectly affecting each other in various ecological aspects are required.

Analysis of Formaldehyde in Fisheries Products (수산물 중 포름알데히드 함량분석)

  • Kim, Hyun-Ah;Jang, Jin-Wook;Kim, Do-Hyeong;Lee, Hwee-Jae;Lee, Soo-Min;Chang, Ho-Won;Lee, Kwang-Soo;Lee, Chang-Hee;Jang, Young-Mi;Kang, Chan-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • In this study, formaldehyde in various fisheries products was previously derivatized with acetylacetone and subsequently analyzed by using HPLC-PDA. The formaldehyde contents ranged from 0.07 to 73.74 mg/kg. The compound was significantly higher in both mollusks (0.34-12.38 mg/kg) and crustaceans (0.09-73.74 mg/kg) than in fish (0.07-3.35 mg/kg) and shellfish (0.50-3.90 mg/kg). This difference was due to storage time and temperature. In general, fish and shellfish are sold live or in refrigerated form with shorter a shelf-life, but mollusks and crustaceans are distributed in cold or frozen systems with a longer shelf-life. Using food intake data from a report of the National Health and Nutrition Survey, the daily human exposure level to formaldehyde was 0.58% of the ADI. The results from this study might provide fundamental information to confirm naturally-originating or fraudulent formaldehyde treatment in fisheries products.

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

A Study on the Structural Behavior of an Underground Radwaste Repository within a Granitic Rock Mass with a Fault Passing through the Cavern Roof (화장암반내 단층지역에 위치한 지하 방사성폐기물 처분장 구조거동연구)

  • 김진웅;강철형;배대석
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Numerical simulation is performed to understand the structural behavior of an underground radwaste repository, assumed to be located at the depth of 500 m, in a granitic rock mats, in which a fault intersects the roof of the repository cavern. Two dimensional universal distinct element code, UDEC is used in the analysis. The numerical model includes a granitic rock mass, a canister with PWR spent fuels surrounded by the compacted bentonite inside the deposition hole, and the mixed bentonite backfilled in the rest of the space within the repository cavern. The structural behavior of three different cases, each case with a fault of an angle of $33^{\circ},\;45^{\circ},\;and\;58^{\circ}$ passing through the cavern roof-wall intersection, has been compared. And then fro the case with the $45^{\circ}$ fault, the hydro-mechanical, thermo-mechanical, and thermo-hydro-mechanical interaction behavior have been studied. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. The groundwater table is assumed to be located 10m below the ground surface, and a steady state flow algorithm is used.

  • PDF